Biotin
Biotin also called vitamin H, vitamin B7 or vitamin B8 is a water-soluble B vitamin. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.
Biotin deficiency can be caused by inadequate dietary intake or inheritance of one or more inborn genetic disorders that affect biotin metabolism. Subclinical deficiency can cause mild symptoms, such as hair thinning, brittle fingernails, or skin rash, typically on the face. Neonatal screening for biotinidase deficiency started in the United States in 1984, with many countries testing for this disorder at birth. Individuals born prior to 1984 are unlikely to have been screened, obscuring the true prevalence of the disorder.
Overview
Biotin is an important component of enzymes involved in metabolizing fats and carbohydrates, influencing cell growth, and affecting amino acids involved in protein synthesis. Biotin assists in various metabolic reactions involving the transfer of carbon dioxide. It may also be helpful in maintaining a steady blood sugar level. Biotin is often recommended as a dietary supplement for strengthening hair and nails, though scientific data supporting these outcomes are weak. Nevertheless, biotin is found in many cosmetics and health products for the hair and skin.Biotin deficiency is rare. The amounts needed are small, and a wide range of foods contain biotin. The U.S. Food and Drug Administration has established daily recommended allowance for adults at 30 μg/day. This amount is also considered sufficient by The German Nutrition Society. Intestinal bacteria synthesize biotin, but biotin which is synthesized endogenously by flora of the intestine is not reabsorbed in the colon, but it is stored as protein-bound biotin in the bacteria of the intestine and thus not available to cover the biotin requirements of the human organism.
The normal biotin blood plasma levels in healthy individuals range from 200 to 1200 ng/L, with an optimum level of 400-500 ng/L in younger adults and children. Independent from the cause, a biotin deficiency always exists when the plasma biotin level is below 100 ng/L.
A number of rare metabolic disorders exist in which an individual's metabolism of biotin is abnormal, such as deficiency in the holocarboxylase synthetase enzyme which covalently links biotin onto the carboxylase, where the biotin acts as a cofactor.
Biotin is composed of a ureido ring fused with a tetrahydrothiophene ring. The ureido ring acts as the carbon dioxide carrier in carboxylation reactions. A valeric acid substituent is attached to one of the carbon atoms of the tetrahydrothiophene ring. Biotin is a coenzyme for multiple carboxylase enzymes, which are involved in the digestion of carbohydrates, synthesis of fatty acids, and gluconeogenesis. Biotin is also required for the catabolism and utilization of the three branched-chain amino acids: leucine, isoleucine, and valine.
Biosynthesis
Biotin has an unusual structure, with two rings fused together via one of their sides. The two rings are ureido and tetrahydrothiophene moieties. Biotin is a heterocyclic, S-containing monocarboxylic acid. It is made from two precursors, alanine and pimeloyl-CoA via three enzymes. 8-Amino-7-oxopelargonic acid synthase is a pyridoxal 5'-phosphate enzyme. The pimeloyl-CoA could be produced by a modified fatty acid pathway involving a malonyl thioester as the starter. 7,8-Diaminopelargonic acid aminotransferase is unusual in using S-adenosyl methionine as the NH2 donor. Dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP. Biotin synthase reductively cleaves SAM into a deoxyadenosine radical, which abstracts an H atom from desthiobiotin to give an intermediate that is trapped by the sulfur donor. This sulfur donor is an iron-sulfur cluster.Cofactor biochemistry
D--Biotin is a cofactor responsible for carbon dioxide transfer in several carboxylase enzymes:- Acetyl-CoA carboxylase alpha
- Acetyl-CoA carboxylase beta
- Methylcrotonyl-CoA carboxylase
- Propionyl-CoA carboxylase
- Pyruvate carboxylase
Biotin binds tightly to the tetrameric protein avidin, with a dissociation constant Kd on the order of 10−15 M, which is one of the strongest known protein-ligand interactions. This is often used in different biotechnological applications. Until 2005, very harsh conditions were thought to be required to break the biotin-streptavidin interaction.
Dietary recommendations
The U.S. Institute of Medicine updated Estimated Average Requirements, Recommended Dietary Allowances and Tolerable Upper Intake Levels for many vitamins in 1998. At that time there was insufficient information to establish EARs and RDAs for biotin. In instances such as this, the IOM sets Adequate Intakes with the understanding that at some later date, when the physiological effects of biotin are better understood, AIs will be replaced by more exact information. Collectively EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes.The biotin AIs for both males and females are: 5 μg/day of biotin for 0-6-month-olds, 6 μg/day of biotin for 7-12-month-olds, 8 μg/day of biotin for 1-3-year-olds, 12 μg/day of biotin for 4-8-year-olds, 20 μg/day of biotin for 9-13-year-olds, 25 μg/day of biotin for 14-18-year-olds, and 30 μg/day of biotin for those 19-years old and older.
The biotin AIs for females who are either pregnant or lactating, respectively, are: 30 μg/day of biotin for pregnant females 14-50-years old; 35 μg/day of biotin for lactating females 14-50-years old.
The European Food Safety Authority refers to the collective set of information as Dietary Reference Values, with Population Reference Intake instead of RDA, and Average Requirement instead of EAR. AI and UL are defined the same as in the United States. For women and men over age 18, the Adequate Intake is set at 40 μg/day. The AI for pregnancy is 40 μg/day per day, and 45 μg/day during breastfeeding. For children ages 1–17 years, the AIs increase with age from 20 to 35 μg/day.
For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value. For biotin labeling purposes 100% of the Daily Value was 300 μg/day, but as of May 27, 2016 it was revised to 30 μg/day to bring it into an agreement with the AI. Compliance with the updated labeling regulations was required by 1 January 2020, for manufacturers with $10 million or more in annual food sales, and by 1 January 2021, for manufacturers with less than $10 million in annual food sales. During the first six months following the 1 January 2020 compliance date, the FDA plans to work cooperatively with manufacturers to meet the new Nutrition Facts label requirements and will not focus on enforcement actions regarding these requirements during that time. A table of the old and new adult Daily Values is provided at Reference Daily Intake.
Safety
The U.S. Institute of Medicine estimates upper limits for vitamins and minerals when evidence for a true limit is sufficient. For biotin, however, there is no UL because adverse effects of high biotin intake have not been determined. EFSA also reviewed safety and reached the same conclusion as in the United States that there is insufficient evidence to set a UL for biotin.Bioavailability
Studies on biotin's bioavailability have been conducted in rats and in chicks. Based on these studies, biotin bioavailability may be low or variable, depending on the type of food being consumed. In general, biotin exists in food as protein-bound form or biocytin. Proteolysis by protease is required prior to absorption. This process assists free biotin release from biocytin and protein-bound biotin. The biotin present in corn is readily available; however, most grains have about a 20-40% bioavailability of biotin.The wide variability in biotin bioavailability may be due to the ability of an organism to break various biotin-protein bonds from food. Whether an organism has an enzyme with that ability will determine the bioavailability of biotin from the foodstuff.
Factors that affect biotin requirements
The frequency of marginal biotin status is not known, but the incidence of low circulating biotin levels in alcoholics has been found to be much greater than in the general population. Also, relatively low levels of biotin have been reported in the urine or plasma of patients who have had a partial gastrectomy or have other causes of achlorhydria, burn patients, epileptics, elderly individuals, and athletes. Pregnancy and lactation may be associated with an increased demand for biotin. In pregnancy, this may be due to a possible acceleration of biotin catabolism, whereas, in lactation, the higher demand has yet to be elucidated. Recent studies have shown marginal biotin deficiency can be present in human gestation, as evidenced by increased urinary excretion of 3-hydroxyisovaleric acid, decreased urinary excretion of biotin and bisnorbiotin, and decreased plasma concentration of biotin. Additionally, smoking may further accelerate biotin catabolism in women.Deficiency
typically occurs from the absence of the vitamin in the diet, particularly in breastfeeding mothers. Daily consumption of raw egg whites for several months may result in biotin deficiency, due to their avidin content.Deficiency can be addressed with nutritional supplementation.
Deficiency symptoms include:
- Brittle and thin fingernails
- Hair loss
- Conjunctivitis
- Dermatitis in the form of a scaly, red rash around the eyes, nose, mouth, and genital area.
- Neurological symptoms in adults, such as depression, lethargy, hallucination, and numbness and tingling of the extremities
Metabolic disorders
Inherited metabolic disorders characterized by deficient activities of biotin-dependent carboxylases are termed multiple carboxylase deficiency. These include deficiencies in the enzymes holocarboxylase synthetase or biotinidase. Holocarboxylase synthetase deficiency prevents the body's cells from using biotin effectively and thus interferes with multiple carboxylase reactions. Biochemical and clinical manifestations include ketolactic acidosis, organic aciduria, hyperammonemia, skin rash, feeding problems, hypotonia, seizures, developmental delay, alopecia, and coma.Biotinidase deficiency is not due to inadequate biotin, but rather to a deficiency in the enzymes that process it. Biotinidase catalyzes the cleavage of biotin from biocytin and biotinyl-peptides and thereby recycles biotin. It is also important in freeing biotin from dietary protein-bound biotin. General symptoms include decreased appetite and growth. Dermatologic symptoms include dermatitis, alopecia, and achromotrichia. Perosis is seen in the skeleton. Fatty liver and kidney syndrome and hepatic steatosis also can occur.