As a dietary supplement, leucine has been found to slow the degradation of muscle tissue by increasing the synthesis of muscle proteins in aged rats. However, results of comparative studies are conflicted. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. More studies are needed, preferably ones based on an objective, random sample of society. Factors such as lifestyle choices, age, gender, diet, exercise, etc. must be factored into the analyses to isolate the effects of supplemental leucine as a standalone, or if taken with other branched chain amino acids. Until then, dietary supplemental leucine cannot be associated as the prime reason for muscular growth or optimal maintenance for the entire population. Both L-leucine and D-leucine protect mice against seizures. D-leucine also terminates seizures in mice after the onset of seizure activity, at least as effectively as diazepam and without sedative effects. Decreased dietary intake of L-leucine promotes adiposity in mice. High blood levels of leucine are associated with insulin resistance in humans, mice, and rodents. This might be due to the effect of leucine to stimulate mTOR signaling. Dietary restriction of leucine and the other BCAAs can reverse diet-induced obesity in wild-type mice by increasing energy expenditure, and can restrict fat mass gain of hyperphagic rats.
Safety
Leucine toxicity, as seen in decompensated maple syrup urine disease, causes delirium and neurologic compromise, and can be life-threatening. A high intake of leucine may cause or exacerbate symptoms of pellagra in people with low niacin status because it interferes with the conversion of L-tryptophan to niacin. Leucine at a dose exceeding 500 mg/kg/d was observed with hyperammonemia. As such, unofficially, a tolerable upper intake level for leucine in healthy adult men can be suggested at 500 mg/kg/d or 35 g/d under acute dietary conditions.
Leucine metabolism occurs in many tissues in the human body; however, most dietary leucine is metabolized within the liver, adipose tissue, and muscle tissue. Adipose and muscle tissue use leucine in the formation of sterols and other compounds. Combined leucine use in these two tissues is seven times greater than in the liver. A small fraction of metabolism – less than 5% in all tissues except the testes where it accounts for about 33% – is initially catalyzed by leucine aminomutase, producing β-leucine, which is subsequently metabolized into , β-ketoisocaproyl-CoA, and then acetyl-CoA by a series of uncharacterized enzymes.
Synthesis in non-human organisms
Leucine is an essential amino acid in the diet of animals because they lack the complete enzyme pathway to synthesize it de novo from potential precursor compounds. Consequently, they must ingest it, usually as a component of proteins. Plants and microorganisms synthesize leucine from pyruvic acid with a series of enzymes:
Synthesis of the small, hydrophobic amino acid valine also includes the initial part of this pathway.
Chemistry
Leucine is a branched-chain amino acid since it possesses an aliphatic side-chain that is not linear. Racemic leucine had been subjected to circularly polarizedsynchrotron radiation to better understand the origin of biomolecular asymmetry. An enantiomeric enhancement of 2.6% had been induced, indicating a possible photochemical origin of biomolecules' homochirality.