Space-based measurements of carbon dioxide
Space-based measurements of carbon dioxide are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure was the Interferometric Monitor for Greenhouse Gases on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision satellites. Different instrument designs may reflect different primary missions.
Purposes and highlights of findings
There are outstanding questions in carbon cycle science that satellite observations can help answer. The Earth system absorbs about half of all anthropogenic emissions. However, it is unclear exactly how this uptake is partitioned to different regions across the globe. It is also uncertain how different regions will behave in terms of flux under a different climate. For example, a forest may increase uptake due to the fertilization or β-effect, or it could release due to increased metabolism by microbes at higher temperatures. These questions are difficult to answer with historically spatially and temporally limited data sets.Even though satellite observations of are somewhat recent, they have been used for a number of different purposes, some of which are highlighted here.
- Megacity enhancements were observed with the GOSAT satellite and minimum observable space-based changes in emissions were estimated.
- Satellite observations have been used for visualizing how is distributed globally, including studies that have focused on anthropogenic emissions.
- Flux estimates were made of into and out of different regions.
- Correlations were observed between anomalous temperatures and measurements in boreal regions.
- Zonal asymmetric patterns of were used to observe fossil fuel signatures.
- Emission ratios with methane were measured from forest fires.
- emission ratios with carbon monoxide measured by the MOPITT instrument were analyzed over major urban regions across the globe to measure developing/developed status.
- OCO-2 observations were used to estimate emissions from wildfires in Indonesia in 2015.
- OCO-2 observations were also used to estimate the excess land-ocean flux due to the 2014–16 El Niño event.
- GOSAT observations were used to attribute 2010-2011 El Niño Modoki on the Brazilian carbon balance.
- OCO-2 observations were used to quantify emissions from individual power plants, demonstrating the potential for future space-based emission monitoring.
Challenges
Water vapor can dilute other gases in air and thus change the amount of in a column above the surface of the Earth, so often column-average dry-air mole fractions are reported instead. To calculate this, instruments may also measure O, which is diluted similarly to other gases, or the algorithms may account for water and surface pressure from other measurements. Clouds may interfere with accurate measurements so platforms may include instruments to measure clouds. Because of measurement imperfections and errors in fitting signals to obtain X, space-based observations may also be compared with ground-based observations such as those from the TCCON.
List of instruments
Instrument/satellite | Primary institution | Service dates | Approximate usable daily soundings | Approximate sounding size | Public data | Notes | Refs |
HIRS-2/TOVS | NOAA | Measuring was not an original mission goal | |||||
IMG | NASDA | 50 | FTS system | ||||
SCIAMACHY | ESA, IUP University of Bremen | 5,000 | |||||
AIRS | JPL | 18,000 | |||||
IASI | CNES/EUMETSAT | Yes | |||||
GOSAT | JAXA | 10,000 | 10.5 km diameter | First dedicated high precision mission, also measures CH4 | |||
OCO | JPL | 100,000 | Failed to reach orbit | ||||
OCO-2 | JPL | 100,000 | High precision | ||||
GHGSat-D | GHGSat | ~2–5 images, 10,000+ pixels each | , | CubeSat and imaging spectrometer using Fabry-Pérot interferometer | |||
TanSat | CAS | 100,000 | Yes | ||||
GAS FTS aboard FY-3D | CMA | 15,000 | 13 km diameter | ||||
GMI | CAS | 10.3 km diameter | Spatial heterodyne | ||||
GOSAT-2 | JAXA | 10,000+ | 9.7 km diameter | Yes | Will also measure CH4 and CO | ||
OCO-3 | JPL | 100,000 | Mounted on the ISS | ||||
MicroCarb | CNES | expected 2021 | ~30,000 | Will likely also measure CH4 | |||
GOSAT-3 | JAXA | expected 2022 | |||||
GeoCARB | University of Oklahoma | expected 2023 | ~800,000 | First -observing geosynchronous satellite, will also measure CH4 and CO |
Partial column measurements
In addition to the total column measurements of down to the ground, there have been several limb sounders that have measured through the edge of Earth's upper atmosphere, and thermal instruments that measure the upper atmosphere during the day and night.- Sounding of the Atmosphere using Broadband Emission Radiometry onboard TIMED launched December 7, 2001 makes measurements in the mesosphere and lower thermosphere in thermal bands.
- ACE-FTS onboard SCISAT-1 launched August 13, 2003 measures solar spectra, from which profiles of can be calculated.
- SOFIE is a limb sounder onboard the AIM satellite launched April 25, 2007.
Conceptual Missions
- Active Sensing of Emissions over Nights, Days, and Seasons is a lidar-based mission
- Geostationary Fourier Transform Spectrometer
- Atmospheric Imaging Mission for Northern regions would involve a constellation of two satellites in elliptical orbits to focus on northern regions. The concept is undergoing a Phase 0 study in 2019-2020.
- Carbon Monitoring Satellite was a concept for an imaging satellite with global coverage approximately every 6 days. This mission never proceeded beyond the concept phase.