The mesosphere is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define its limits: it begins at the top of the stratosphere, and ends at the mesopause, which is the coldest part of Earth's atmosphere with temperatures below. The exact upper and lower boundaries of the mesosphere vary with latitude and with season, but the lower boundary is usually located at altitudes from above the Earth's surface and the upper boundary is usually around. The stratosphere and the mesosphere are sometimes collectively referred to as the "middle atmosphere", which spans altitudes approximately between 12 and 80 km above Earth's surface. The mesopause, at an altitude of, separates the mesosphere from the thermosphere—the second-outermost layer of Earth's atmosphere. This is the turbopause, below which different chemical species are well-mixed due to turbulent eddies. Above this level the atmosphere becomes non-uniform because the scale heights of different chemical species differ according to their molecular masses. The term near space is also sometimes used to refer to altitudes within the mesosphere. This term does not have a technical definition, but typically refers to the region of the atmosphere up to, roughly between the Armstrong limit and the Kármán line ; or, by another definition, to the range of altitudes above which commercial airliners fly but below which satellites orbit the Earth. Some sources distinguish between the terms "near space" and "upper atmosphere", so that only the layers closest to the Kármán line are described as "near space".
Temperature
Within the mesosphere, temperature decreases with increasing height, due to decreasing absorption of solar radiation by the rarefied atmosphere and increasing cooling by CO2 radiative emission. The top of the mesosphere, called the mesopause, is the coldest part of Earth's atmosphere. Temperatures in the upper mesosphere fall as low as, varying according to latitude and season.
Dynamic features
The main most important features in this region are strong zonal winds, atmospheric tides, internal atmospheric gravity waves, and planetary waves. Most of these tides and waves start in the troposphere and lower stratosphere, and propagate to the mesosphere. In the mesosphere, gravity-wave amplitudes can become so large that the waves become unstable and dissipate. This dissipation deposits momentum into the mesosphere and largely drives global circulation. This helps the Earth. Noctilucent clouds are located in the mesosphere. The upper mesosphere is also the region of the ionosphere known as the D layer, which is only present during the day when some ionization occurs with nitric oxide being ionized by Lyman series-alpha hydrogen radiation. The ionization is so weak that when night falls, and the source of ionization is removed, the free electron and ion form back into a neutral molecule. The mesosphere has been called the "ignorosphere" because it is poorly studied relative to the stratosphere and the thermosphere. A deep sodium layer is located between. Made of unbound, non-ionized atoms of sodium, the sodium layer radiates weakly to contribute to the airglow. The sodium has an average concentration of 400,000 atoms per cubic centimetre. This band is regularly replenished by sodium sublimating from incoming meteors. Astronomers have begun utilizing this sodium band to create "guide stars" as part of the adaptive optical correction process used to produce ultra-sharp ground-based observations. Other metal layers, e.g. iron and potassium, exist in the upper mesosphere/lower thermosphere region as well. Beginning in October 2018, a distinct type of aurora has been identified, originating in the mesosphere. Often referred to as 'dunes' due to their resemblance to sandy ripples on a beach, the green undulating lights extend toward the equator. They have been identified as originating about above the surface. Since auroras are caused by ultra-high-speed solar particles interacting with atmospheric molecules, the green color of these dunes has tentatively been explained by the interaction of those solar particles with oxygen molecules. The dunes therefore occur where mesospheric oxygen is more concentrated. Millions of meteors enter the Earth's atmosphere, averaging 40,000 tons per year. The ablated material, called meteoric smoke, is thought to serve as condensation nuclei for noctilucent clouds.
Exploration
The mesosphere lies above altitude records for aircraft, while only the lowest few kilometers are accessible to balloons, for which the altitude record is 53.0 km. Meanwhile, the mesosphere is below the minimum altitude for orbitalspacecraft due to high atmospheric drag. It has only been accessed through the use of sounding rockets, which are only capable of taking mesospheric measurements for a few minutes per mission. As a result, it is the least-understood part of the atmosphere, resulting in the humorous moniker ignorosphere. The presence of red sprites and blue jets, noctilucent clouds, and density shears within this poorly understood layer are of current scientific interest.