Service-oriented modeling


Service-oriented modeling is the discipline of modeling business and software systems, for the purpose of designing and specifying service-oriented business systems within a variety of architectural styles and paradigms, such as application architecture, service-oriented architecture, microservices, and cloud computing.
Any service-oriented modeling method typically includes a modeling language that can be employed by both the 'problem domain organization', and 'solution domain organization', whose unique perspectives typically influence the service development life-cycle strategy and the projects implemented using that strategy.
Service-oriented modeling typically strives to create models that provide a comprehensive view of the analysis, design, and architecture of all 'Software Entities' in an organization, which can be understood by individuals with diverse levels of business and technical understanding. Service-oriented modeling typically encourages viewing software entities as 'assets', and refers to these assets collectively as 'services'. A key service design concern is to find the right service granularity both on the business level and on a technical level.

Popular approaches

Several approaches have been proposed specifically for designing and modeling services, including SDDM, SOMA and SOMF.

Service-oriented design and development methodology

Service-Oriented Design and Development Methodology is a fusion method created and compiled by M. Papazoglou and W.J. van den Heuvel. The paper argues that SOA designers and service developers cannot be expected to oversee a complex service-oriented development project without relying on a sound design and development methodology. It provides an overview of the methods and techniques used in service-oriented design, approaches the service development methodology from the point of view of both service producers and requesters, and reviews the range of SDDM elements that are available to these roles.
An update to SDDM was later published in Web Services and SOA: Principles and Technology by M. Papazoglou.

Service-oriented modeling and architecture

announced service-oriented modeling and architecture as its SOA-related methodology in 2004 and published parts of it subsequently. SOMA refers to the more general domain of service modeling necessary to design and create SOA. SOMA covers a broader scope and implements service-oriented analysis and design through the identification, specification and realization of services, components that realize those services, and flows that can be used to compose services.
SOMA includes an analysis and design method that extends traditional object-oriented and component-based analysis and design methods to include concerns relevant to and supporting SOA. It consists of three major phases of identification, specification and realization of the three main elements of SOA, namely, services, components that realize those services and flows that can be used to compose services.
SOMA is an end-to-end SOA method for the identification, specification, realization and implementation of services, components, flows. SOMA builds on current techniques in areas such as domain analysis, functional areas grouping, variability-oriented analysis process modeling, component-based development, object-oriented analysis and design and use case modeling. SOMA introduces new techniques such as goal-service modeling, service model creation and a service litmus test to help determine the granularity of a service.
SOMA identifies services, component boundaries, flows, compositions, and information through complementary techniques which include domain decomposition, goal-service modeling and existing asset analysis.
The service lifecycle in SOMA consists of the phases of identification, specification, realization, implementation, deployment and management in which the fundamental building blocks of SOA are identified then refined and implemented in each phase. The fundamental building blocks of SOA consist of services, components, flows and related to them, information, policy and contracts.

Service-oriented modeling framework (SOMF)

SOMF has been devised by author Michael Bell as a holistic and anthropomorphic modeling language for software development that employs disciplines and a universal language to provide tactical and strategic solutions to enterprise problems. The term "holistic language" pertains to a modeling language that can be employed to design any application, business and technological environment, either local or distributed. This universality may include design of application-level and enterprise-level solutions, including SOA landscapes, cloud computing, or big data environments. The term "anthropomorphic", on the other hand, affiliates the SOMF language with intuitiveness of implementation and simplicity of usage.
SOMF is a service-oriented development life cycle methodology, a discipline-specific modeling process. It offers a number of modeling practices and disciplines that contribute to a successful service-oriented life cycle development and modeling during a project.
It illustrates the major elements that identify the “what to do” aspects of a service development scheme. These are the modeling pillars that will enable practitioners to craft an effective project plan and to identify the milestones of a service-oriented initiative—either a small or large-scale business or a technological venture.
The provided image thumb depicts the four sections of the modeling framework that identify the general direction and the corresponding units of work that make up a service-oriented modeling strategy: practices, environments, disciplines, and artifacts. These elements uncover the context of a modeling occupation and do not necessarily describe the process or the sequence of activities needed to fulfill modeling goals. These should be ironed out during the project plan – the service-oriented development life cycle strategy – that typically sets initiative boundaries, time frame, responsibilities and accountabilities, and achievable project milestones.