RNA-Seq


RNA-Seq is a particular technology-based sequencing technique which uses next-generation sequencing to reveal the presence and quantity of RNA in a biological sample at a given moment, analyzing the continuously changing cellular transcriptome.
Specifically, RNA-Seq facilitates the ability to look at alternative gene spliced transcripts, post-transcriptional modifications, gene fusion, mutations/SNPs and changes in gene expression over time, or differences in gene expression in different groups or treatments. In addition to mRNA transcripts, RNA-Seq can look at different populations of RNA to include total RNA, small RNA, such as miRNA, tRNA, and ribosomal profiling. RNA-Seq can also be used to determine exon/intron boundaries and verify or amend previously annotated 5' and 3' gene boundaries. Recent advances in RNA-Seq include single cell sequencing and in situ sequencing of fixed tissue.
Prior to RNA-Seq, gene expression studies were done with hybridization-based microarrays. Issues with microarrays include cross-hybridization artifacts, poor quantification of lowly and highly expressed genes, and needing to know the sequence a priori. Because of these technical issues, transcriptomics transitioned to sequencing-based methods. These progressed from Sanger sequencing of Expressed Sequence Tag libraries, to chemical tag-based methods, and finally to the current technology, next-gen sequencing of cDNA.

Methods

Library preparation

The general steps to prepare a complementary DNA library for sequencing are described below, but often vary between platforms.
  1. RNA Isolation: RNA is isolated from tissue and mixed with deoxyribonuclease. DNase reduces the amount of genomic DNA. The amount of RNA degradation is checked with gel and capillary electrophoresis and is used to assign an RNA integrity number to the sample. This RNA quality and the total amount of starting RNA are taken into consideration during the subsequent library preparation, sequencing, and analysis steps.
  2. RNA selection/depletion: To analyze signals of interest, the isolated RNA can either be kept as is, filtered for RNA with 3' polyadenylated tails to include only mRNA, depleted of ribosomal RNA, and/or filtered for RNA that binds specific sequences. The RNA with 3' poly tails are mature, processed, coding sequences. Poly selection is performed by mixing RNA with poly oligomers covalently attached to a substrate, typically magnetic beads. Poly selection ignores noncoding RNA and introduces 3' bias, which is avoided with the ribosomal depletion strategy. The rRNA is removed because it represents over 90% of the RNA in a cell, which if kept would drown out other data in the transcriptome.
  3. cDNA synthesis: RNA is reverse transcribed to cDNA because DNA is more stable and to allow for amplification and leverage more mature DNA sequencing technology. Amplification subsequent to reverse transcription results in loss of strandedness, which can be avoided with chemical labeling or single molecule sequencing. Fragmentation and size selection are performed to purify sequences that are the appropriate length for the sequencing machine. The RNA, cDNA, or both are fragmented with enzymes, sonication, or nebulizers. Fragmentation of the RNA reduces 5' bias of randomly primed-reverse transcription and the influence of primer binding sites, with the downside that the 5' and 3' ends are converted to DNA less efficiently. Fragmentation is followed by size selection, where either small sequences are removed or a tight range of sequence lengths are selected. Because small RNAs like miRNAs are lost, these are analyzed independently. The cDNA for each experiment can be indexed with a hexamer or octamer barcode, so that these experiments can be pooled into a single lane for multiplexed sequencing.
StrategyType of RNARibosomal RNA contentUnprocessed RNA contentGenomic DNA contentIsolation method
Total RNAAllHighHighHigh-
PolyA selectionCodingLowLowLowHybridization with poly oligomers
rRNA depletionCoding, noncodingLowHighHighRemoval of oligomers complementary to rRNA
RNA captureTargetedLowModerateLowHybridization with probes complementary to desired transcripts

Small RNA/non-coding RNA sequencing

When sequencing RNA other than mRNA, the library preparation is modified. The cellular RNA is selected based on the desired size range. For small RNA targets, such as miRNA, the RNA is isolated through size selection. This can be performed with a size exclusion gel, through size selection magnetic beads, or with a commercially developed kit. Once isolated, linkers are added to the 3' and 5' end then purified. The final step is cDNA generation through reverse transcription.

Direct RNA sequencing

Because converting RNA into cDNA, ligation, amplification, and other sample manipulations have been shown to introduce biases and artifacts that may interfere with both the proper characterization and quantification of transcripts, single molecule direct RNA sequencing has been explored by companies including Helicos, Oxford Nanopore Technologies, and others. This technology sequences RNA molecules directly in a massively-parallel manner.

Single-cell RNA sequencing (scRNA-Seq)

Standard methods such as microarrays and standard bulk RNA-Seq analysis analyze the expression of RNAs from large populations of cells. In mixed cell populations, these measurements may obscure critical differences between individual cells within these populations.
Single-cell RNA sequencing provides the expression profiles of individual cells. Although it is not possible to obtain complete information on every RNA expressed by each cell, due to the small amount of material available, patterns of gene expression can be identified through gene clustering analyses. This can uncover the existence of rare cell types within a cell population that may never have been seen before. For example, rare specialized cells in the lung called pulmonary ionocytes that express the Cystic Fibrosis Transmembrane Conductance Regulator were identified in 2018 by two groups performing scRNA-Seq on lung airway epithelia.

Experimental procedures

Current scRNA-Seq protocols involve the following steps: isolation of single cell and RNA, reverse transcription, amplification, library generation and sequencing. Early methods separated individual cells into separate wells; more recent methods encapsulate individual cells in droplets in a microfluidic device, where the reverse transcription reaction takes place, converting RNAs to cDNAs. Each droplet carries a DNA "barcode" that uniquely labels the cDNAs derived from a single cell. Once reverse transcription is complete, the cDNAs from many cells can be mixed together for sequencing; transcripts from a particular cell are identified by the unique barcode.
Challenges for scRNA-Seq include preserving the initial relative abundance of mRNA in a cell and identifying rare transcripts. The reverse transcription step is critical as the efficiency of the RT reaction determines how much of the cell's RNA population will be eventually analyzed by the sequencer. The processivity of reverse transcriptases and the priming strategies used may affect full-length cDNA production and the generation of libraries biased toward 3’ or 5' end of genes.
In the amplification step, either PCR or in vitro transcription is currently used to amplify cDNA. One of the advantages of PCR-based methods is the ability to generate full-length cDNA. However, different PCR efficiency on particular sequences may also be exponentially amplified, producing libraries with uneven coverage. On the other hand, while libraries generated by IVT can avoid PCR-induced sequence bias, specific sequences may be transcribed inefficiently, thus causing sequence drop-out or generating incomplete sequences.
Several scRNA-Seq protocols have been published:
Tang et al.,
STRT,
SMART-seq,
CEL-seq,
RAGE-seq,
, Quartz-seq.
and C1-CAGE. These protocols differ in terms of strategies for reverse transcription, cDNA synthesis and amplification, and the possibility to accommodate sequence-specific barcodes or the ability to process pooled samples.
In 2017, two approaches were introduced to simultaneously measure single-cell mRNA and protein expression through oligonucleotide-labeled antibodies known as REAP-seq, and CITE-seq.

Applications

scRNA-Seq is becoming widely used across biological disciplines including Development, Neurology, Oncology, Autoimmune disease, and Infectious disease.
scRNA-Seq has provided considerable insight into the development of embryos and organisms, including the worm Caenorhabditis elegans, and the regenerative planarian Schmidtea mediterranea. The first vertebrate animals to be mapped in this way were Zebrafish and Xenopus laevis. In each case multiple stages of the embryo were studied, allowing the entire process of development to be mapped on a cell-by-cell basis. Science recognized these advances as the 2018 Breakthrough of the Year.

Experimental considerations

A variety of parameters are considered when designing and conducting RNA-Seq experiments:

Transcriptome assembly

Two methods are used to assign raw sequence reads to genomic features :
A note on assembly quality: The current consensus is that 1) assembly quality can vary depending on which metric is used, 2) assemblies that scored well in one species do not necessarily perform well in the other species, and 3) combining different approaches might be the most reliable.

Gene expression quantification

Expression is quantified to study cellular changes in response to external stimuli, differences between healthy and diseased states, and other research questions. Gene expression is often used as a proxy for protein abundance, but these are often not equivalent due to post transcriptional events such as RNA interference and nonsense-mediated decay.
Expression is quantified by counting the number of reads that mapped to each locus in the transcriptome assembly step. Expression can be quantified for exons or genes using contigs or reference transcript annotations. These observed RNA-Seq read counts have been robustly validated against older technologies, including expression microarrays and qPCR. Examples of tools that quantify counts are HTSeq, FeatureCounts, Rcount, maxcounts, FIXSEQ, and Cuffquant. The read counts are then converted into appropriate metrics for hypothesis testing, regressions, and other analyses. Parameters for this conversion are:
Absolute quantification of gene expression is not possible with most RNA-Seq experiments, which quantify expression relative to all transcripts. It is possible by performing RNA-Seq with spike-ins, samples of RNA at known concentrations. After sequencing, read counts of spike-in sequences are used to determine the relationship between each gene's read counts and absolute quantities of biological fragments. In one example, this technique was used in Xenopus tropicalis embryos to determine transcription kinetics.

Differential expression

The simplest but often most powerful use of RNA-Seq is finding differences in gene expression between two or more conditions ; this process is called differential expression. The outputs are frequently referred to as differentially expressed genes and these genes can either be up- or down-regulated. There are many tools that perform differential expression. Most are run in R, Python, or the Unix command line. Commonly used tools include DESeq, edgeR, and voom+limma, all of which are available through R/Bioconductor. These are the common considerations when performing differential expression:
Downstream analyses for a list of differentially expressed genes come in two flavors, validating observations and making biological inferences. Owing to the pitfalls of differential expression and RNA-Seq, important observations are replicated with an orthogonal method in the same samples or another, sometimes pre-registered, experiment in a new cohort. The latter helps ensure generalizability and can typically be followed up with a meta-analysis of all the pooled cohorts. The most common method for obtaining higher-level biological understanding of the results is gene set enrichment analysis, although sometimes candidate gene approaches are employed. Gene set enrichment determines if the overlap between two gene sets is statistically significant, in this case the overlap between differentially expressed genes and gene sets from known pathways/databases or from complementary analyses in the same data. Common tools for gene set enrichment include web interfaces and software packages. When evaluating enrichment results, one heuristic is to first look for enrichment of known biology as a sanity check and then expand the scope to look for novel biology.

Alternative splicing

is integral to eukaryotes and contributes significantly to protein regulation and diversity, occurring in >90% of human genes. There are multiple alternative splicing modes: exon skipping, mutually exclusive exons, alternative donor or acceptor sites, intron retention, alternative transcription start site, and alternative polyadenylation. One goal of RNA-Seq is to identify alternative splicing events and test if they differ between conditions. Long-read sequencing captures the full transcript and thus minimizes many of issues in estimating isoform abundance, like ambiguous read mapping. For short-read RNA-Seq, there are multiple methods to detect alternative splicing that can be classified into three main groups:
Differential gene expression tools can also be used for differential isoform expression if isoforms are quantified ahead of time with other tools like RSEM.

Coexpression networks

Coexpression networks are data-derived representations of genes behaving in a similar way across tissues and experimental conditions. Their main purpose lies in hypothesis generation and guilt-by-association approaches for inferring functions of previously unknown genes. RNA-Seq data has been used to infer genes involved in specific pathways based on Pearson correlation, both in plants and mammals. The main advantage of RNA-Seq data in this kind of analysis over the microarray platforms is the capability to cover the entire transcriptome, therefore allowing the possibility to unravel more complete representations of the gene regulatory networks. Differential regulation of the splice isoforms of the same gene can be detected and used to predict and their biological functions.
Weighted gene co-expression network analysis has been successfully used to identify co-expression modules and intramodular hub genes based on RNA seq data. Co-expression modules may correspond to cell types or pathways. Highly connected intramodular hubs can be interpreted as representatives of their respective module. An eigengene is a weighted sum of expression of all genes in a module. Eigengenes are useful biomarkers for diagnosis and prognosis. Variance-Stabilizing Transformation approaches for estimating correlation coefficients based on RNA seq data have been proposed.

Variant discovery

RNA-Seq captures DNA variation, including single nucleotide variants, small insertions/deletions. and structural variation. Variant calling in RNA-Seq is similar to DNA variant calling and often employs the same tools with adjustments to account for splicing. One unique dimension for RNA variants is allele-specific expression : the variants from only one haplotype might be preferentially expressed due to regulatory effects including imprinting and expression quantitative trait loci, and noncoding rare variants. Limitations of RNA variant identification include that it only reflects expressed regions and has lower quality when compared to direct DNA sequencing.

RNA editing (post-transcriptional alterations)

Having the matching genomic and transcriptomic sequences of an individual can help detect post-transcriptional edits. A post-transcriptional modification event is identified if the gene's transcript has an allele/variant not observed in the genomic data.

Fusion gene detection

Caused by different structural modifications in the genome, fusion genes have gained attention because of their relationship with cancer. The ability of RNA-Seq to analyze a sample's whole transcriptome in an unbiased fashion makes it an attractive tool to find these kinds of common events in cancer.
The idea follows from the process of aligning the short transcriptomic reads to a reference genome. Most of the short reads will fall within one complete exon, and a smaller but still large set would be expected to map to known exon-exon junctions. The remaining unmapped short reads would then be further analyzed to determine whether they match an exon-exon junction where the exons come from different genes. This would be evidence of a possible fusion event, however, because of the length of the reads, this could prove to be very noisy. An alternative approach is to use pair-end reads, when a potentially large number of paired reads would map each end to a different exon, giving better coverage of these events. Nonetheless, the end result consists of multiple and potentially novel combinations of genes providing an ideal starting point for further validation.

History

RNA-Seq was first developed in mid 2000s with the advent of next-generation sequencing technology. The first manuscripts that used RNA-Seq even without using the term includes those of prostate cancer cell lines, Medicago truncatula, maize, and Arabidopsis thaliana, while the term "RNA-Seq" itself was first mentioned in 2008. The number of manuscripts referring to RNA-Seq in the title or abstract is continuously increasing with 6754 manuscripts published in 2018. The intersection of RNA-Seq and medicine has similar celerity.

Applications to medicine

RNA-Seq has the potential to identify new disease biology, profile biomarkers for clinical indications, infer druggable pathways, and make genetic diagnoses. These results could be further personalized for subgroups or even individual patients, potentially highlighting more effective prevention, diagnostics, and therapy. The feasibility of this approach is in part dictated by costs in money and time; a related limitation is the required team of specialists to fully interpret the huge amount of data generated by this analysis.

Large-scale sequencing efforts

A lot of emphasis has been given to RNA-Seq data after the Encyclopedia of DNA Elements and The Cancer Genome Atlas projects have used this approach to characterize dozens of cell lines and thousands of primary tumor samples, respectively. ENCODE aimed to identify genome-wide regulatory regions in different cohort of cell lines and transcriptomic data are paramount in order to understand the downstream effect of those epigenetic and genetic regulatory layers. TCGA, instead, aimed to collect and analyze thousands of patient's samples from 30 different tumor types in order to understand the underlying mechanisms of malignant transformation and progression. In this context RNA-Seq data provide a unique snapshot of the transcriptomic status of the disease and look at an unbiased population of transcripts that allows the identification of novel transcripts, fusion transcripts and non-coding RNAs that could be undetected with different technologies.