General form of the Kronecker sum of discrete Laplacians
In a general situation of the separation of variables in the discrete case, the multidimensional discrete Laplacian is a Kronecker sum of 1D discrete Laplacians.
Mathematically, using the Kronecker sum: where and are 1D discrete Laplacians in the x- and y-directions, correspondingly, and are the identities of appropriate sizes. Both and must correspond to the case of the homogeneous Dirichlet boundary condition at end points of the x- and y-intervals, in order to generate the 2D discrete Laplacian L corresponding to the homogeneous Dirichlet boundary condition everywhere on the boundary of the rectangular domain. Here is a sample OCTAVE/MATLAB code to computeL on the regular 10×15 2D grid: nx = 10; % number of grid points in the x-direction; ny = 15; % number of grid points in the y-direction; ex = ones; Dxx = spdiags; %1D discrete Laplacian in the x-direction ; ey = ones; Dyy = spdiags; %1D discrete Laplacian in the y-direction ; L = kron + kron ;
Example: 3D discrete Laplacian on a regular grid with the homogeneous Dirichlet boundary condition
where and are 1D discrete Laplacians in every of the 3 directions, and are the identities of appropriate sizes. Each 1D discrete Laplacian must correspond to the case of the homogeneous Dirichlet boundary condition, in order to generate the 3D discrete Laplacian L corresponding to the homogeneous Dirichlet boundary condition everywhere on the boundary. The eigenvalues are where, and the corresponding eigenvectors are where the multi-index pairs the eigenvalues and the eigenvectors, while the multi-index determines the location of the value of every eigenvector at the regular grid. The boundary points, where the homogeneous Dirichlet boundary condition are imposed, are just outside the grid.
Available software
An OCTAVE/MATLAB code http://www.mathworks.com/matlabcentral/fileexchange/27279-laplacian-in-1d-2d-or-3d is available under a BSD License, which computes the sparse matrix of the 1, 2D, and 3D negative Laplacians on a rectangular grid for combinations of Dirichlet, Neumann, and Periodic boundary conditions using Kronecker sums of discrete 1D Laplacians. The code also provides the exact eigenvalues and eigenvectors using the explicit formulas given above.