By Euler's formula the numbers of faces F, of verticesV, and of edgesE of any convex polyhedron are related by the formulaF + V = E + 2. In the case of a cuboid this gives 6 + 8 = 12 + 2; that is, like a cube, a cuboid has 6 faces, 8 vertices, and 12 edges. Along with the rectangular cuboids, any parallelepiped is a cuboid of this type, as is a square frustum.
Rectangular cuboid
In a rectangular cuboid, all angles are right angles, and opposite faces of a cuboid are equal. By definition this makes it a right rectangular prism, and the terms rectangular parallelepiped or orthogonal parallelepiped are also used to designate this polyhedron. The terms "rectangular prism" and "oblong prism", however, are ambiguous, since they do not specify all angles. The square cuboid, square box, or right square prism is a special case of the cuboid in which at least two faces are squares. It has Schläfli symbol × , and its symmetry is doubled from to , order 16. The cube is a special case of the square cuboid in which all six faces are squares. It has Schläfli symbol, and its symmetry is raised from , to , order 48. If the dimensions of a rectangular cuboid are a, b and c, then its volume is abc and its surface area is 2. The length of the space diagonal is Cuboid shapes are often used for boxes, cupboards, rooms, buildings, containers, cabinets, books, a sturdycomputer chassis, printing devices, electronic calling touchscreen devices, washing and drying machines, etc. Cuboids are among those solids that can tessellate 3-dimensional space. The shape is fairly versatile in being able to contain multiple smaller cuboids, e.g. sugar cubes in a box, boxes in a cupboard, cupboards in a room, and rooms in a building. A cuboid with integer edges as well as integer face diagonals is called an Euler brick, for example with sides 44, 117 and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists.
Nets
The number of different nets for a simple cube is 11, however this number increases significantly to 54 for a rectangular cuboid of 3 different lengths.