H-Bio


H-Bio is an oil-refining processes which involves converting vegetable oil into high-quality diesel via hydrogenation. Hydrogenation is a chemical reaction, in which a substance is treated with Hydrogen, thus resulting in a new product. In H-Bio, Hydrogen is added to vegetable oil and mineral oil, making a usable diesel that is made up of diesel oil and 10% vegetable oil. The process was first developed in 2006 by the Brazilian, state-owned and gas company, Petrobras, and was primarily established for commercial use.
H-Bio can be used to power many cars that already use diesel, therefore, H-Bio can be widely sold to car owners in local fuel stations. Moreover, the process has many advantages when compared to traditional methods, but also has drawbacks. H-Bio has been tested and confirmed as a viable method to supply diesel globally.

Process

The procedure requires that the diesel pass through the Hydrodesulfurization Chamber, the Cracking Unit, and mix with HDS Light Cycle Oil. The Hydrodesulfurization Chamber removes the majority of the Sulfur content found in the diesel. The Cracking Unit breaks up the hydrocarbons, and then H-Bio is mixed with great amounts of poor diesel fuel. The process consists of:

Hydrodesulfurization

Diesel first passes through the distillation unit to undergo hydrodesulfurization. Hydrodesulfurization is the process of removing sulfur from petroleum-based products by chemically combining it with hydrogen, resulting in hydrogen sulfide. Hydrogen and sulfur are combined in a hydrodesulfurization reactor, usually under the presence of a metal catalyst, where pressure is added to the bond and it is heated in temperatures ranging from 300° to 400° Celsius, resulting in Hydrogen Sulfide molecules that are not included in the diesel.

Cracking Unit

The diesel is then passed through the Cracking Unit. The Cracking Unit is a device that breaks up the hydrocarbons, that make up the diesel, into smaller sizes. Companies break up the hydrocarbons so that they make the most petroleum-based products, with the amount of supply they have.

Mixing with HDS Light Cycle Oil

Next, the diesel is mixed with HDS light cycle oil. The HDS light cycle oil is a poor diesel fuel due to its high sulfur content and poor engine ignition performance, thus it is mixed with H-Bio. The two are combined to produce the maximum amount of high-quality fuel possible, with the given amount of supply. When HDS Light Cycle Oil and H-Bio are blended, the fluid viscosity is modified for maximum performance, resulting in high-quality diesel. The resulting diesel has great ignition performance with very little sulfur content.
Finally, the diesel is mixed with other components that do not require the hydrogenation process and this mixture results in H-Bio.

Application

H-Bio can be easily implemented into society. H-Bio is compatible with any vehicle that already uses diesel as its main fuel source, in which no modifications to the engine or transmission are necessary. Additionally, H-Bio can be sold to consumers in local fuel stations, unlike its counterpart, biodiesel.

Pros

H-Bio has many aspects that are very beneficial. Some advantages include car efficiency, diesel characteristics that enhance performance, and fewer green house emissions. The main advantages of the H-Bio are that:
H-Bio also has drawbacks, which include the high production costs and green house gases emitted when the diesel is burned.
H-Bio has achieved industrial testing that uses soybean oil to produce diesel. The results proved that the process is more than capable of being mass-produced and implemented into society. Moreover, Petrobras has filed for patents to the , to mass-produce H-Bio and distribute it globally. The short-term goal is to create two refineries and eventually expand to five refineries in the long term. Next, the company will test this process, with different types of vegetable oils, in other refineries, and lastly, they will analyze the results.