Hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. With a standard atomic weight of, hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all baryonic mass. Non-remnant stars are mainly composed of hydrogen in the plasma state. The most common isotope of hydrogen, termed protium, has one proton and no neutrons.
The universal emergence of atomic hydrogen first occurred during the recombination epoch. At standard temperature and pressure, hydrogen is a colorless, odorless, tasteless, non-toxic, nonmetallic, highly combustible diatomic gas with the molecular formula H2. Since hydrogen readily forms covalent compounds with most nonmetallic elements, most of the hydrogen on Earth exists in molecular forms such as water or organic compounds. Hydrogen plays a particularly important role in acid–base reactions because most acid-base reactions involve the exchange of protons between soluble molecules. In ionic compounds, hydrogen can take the form of a negative charge when it is known as a hydride, or as a positively charged species denoted by the symbol H+. The hydrogen cation is written as though composed of a bare proton, but in reality, hydrogen cations in ionic compounds are always more complex. As the only neutral atom for which the Schrödinger equation can be solved analytically, study of the energetics and bonding of the hydrogen atom has played a key role in the development of quantum mechanics.
Hydrogen gas was first artificially produced in the early 16th century by the reaction of acids on metals. In 1766–81, Henry Cavendish was the first to recognize that hydrogen gas was a discrete substance, and that it produces water when burned, the property for which it was later named: in Greek, hydrogen means "water-former".
Industrial production is mainly from steam reforming natural gas, and less often from more energy-intensive methods such as the electrolysis of water. Most hydrogen is used near the site of its production, the two largest uses being fossil fuel processing and ammonia production, mostly for the fertilizer market. Hydrogen is problematic in metallurgy because it can embrittle many metals, complicating the design of pipelines and storage tanks.
Properties
Combustion
Hydrogen gas (dihydrogen or molecular hydrogen, is highly flammable:The enthalpy of combustion is −286 kJ/mol:
Hydrogen gas forms explosive mixtures with air in concentrations from 4–74% and with chlorine at 5–95%. The explosive reactions may be triggered by spark, heat, or sunlight. The hydrogen autoignition temperature, the temperature of spontaneous ignition in air, is.
Flame
Pure hydrogen-oxygen flames emit ultraviolet light and with high oxygen mix are nearly invisible to the naked eye, as illustrated by the faint plume of the Space Shuttle Main Engine, compared to the highly visible plume of a Space Shuttle Solid Rocket Booster, which uses an ammonium perchlorate composite. The detection of a burning hydrogen leak may require a flame detector; such leaks can be very dangerous. Hydrogen flames in other conditions are blue, resembling blue natural gas flames. The destruction of the Hindenburg airship was a notorious example of hydrogen combustion and the cause is still debated. The visible orange flames in that incident were the result of a rich mixture of hydrogen to oxygen combined with carbon compounds from the airship skin.Reactants
H2 is relatively unreactive. The thermodynamic basis this low reactivity is the very strong H-H bond, with a bond dissociation energy of 435.7 kJ/mol. The kinetic basis of the low reactivity is the nonpolar nature of H2 and its weak polarizability. It spontaneously reacts with chlorine and fluorine to form hydrogen chloride and hydrogen fluoride, respectively. Molten sodium and potassium react with the gas to give the respective hydrides NaH and KH. The reactivity of H2 is strongly affected by the presence of metal catalysts. Thus, while H2 combusts readily, mixtures of H2 and O2 do not react in the absence of a catalyst.Electron energy levels
The ground state energy level of the electron in a hydrogen atom is −13.6 eV, which is equivalent to an ultraviolet photon of roughly 91 nm wavelength.The energy levels of hydrogen can be calculated fairly accurately using the Bohr model of the atom, which conceptualizes the electron as "orbiting" the proton in analogy to the Earth's orbit of the Sun. However, the atomic electron and proton are held together by electromagnetic force, while planets and celestial objects are held by gravity. Because of the discretization of angular momentum postulated in early quantum mechanics by Bohr, the electron in the Bohr model can only occupy certain allowed distances from the proton, and therefore only certain allowed energies.
A more accurate description of the hydrogen atom comes from a purely quantum mechanical treatment that uses the Schrödinger equation, Dirac equation or even the Feynman path integral formulation to calculate the probability density of the electron around the proton. The most complicated treatments allow for the small effects of special relativity and vacuum polarization. In the quantum mechanical treatment, the electron in a ground state hydrogen atom has no angular momentum at all—illustrating how the "planetary orbit" differs from electron motion.
Elemental molecular forms
Molecular H2 exists a two spin isomers, i.e. compounds with two nuclear spin states. In the orthohydrogen form, the spins of the two nuclei are parallel and form a triplet state with a molecular spin quantum number of 1 ; in the parahydrogen form the spins are antiparallel and form a singlet with a molecular spin quantum number of 0. At standard temperature and pressure, hydrogen gas contains about 25% of the para form and 75% of the ortho form, also known as the "normal form". The equilibrium ratio of orthohydrogen to parahydrogen depends on temperature, but because the ortho form is an excited state and has a higher energy than the para form, it is unstable and cannot be purified. At very low temperatures, the equilibrium state is composed almost exclusively of the para form. The liquid and gas phase thermal properties of pure parahydrogen differ significantly from those of the normal form because of differences in rotational heat capacities, as discussed more fully in spin isomers of hydrogen. The ortho/para distinction also occurs in other hydrogen-containing molecules or functional groups, such as water and methylene, but is of little significance for their thermal properties.The ortho form that converts to the para form slowly at low temperatures. The ortho/para ratio in condensed H2 is an important consideration in the preparation and storage of liquid hydrogen: the conversion from ortho to para is exothermic and produces enough heat to evaporate some of the hydrogen liquid, leading to loss of liquefied material. Catalysts for the ortho-para interconversion, such as ferric oxide, activated carbon, platinized asbestos, rare earth metals, uranium compounds, chromic oxide, or some nickel compounds, are used during hydrogen cooling.
Phases
- Gaseous hydrogen
- Liquid hydrogen
- Slush hydrogen
- Solid hydrogen
- Metallic hydrogen
Compounds
Covalent and organic compounds
While H2 is not very reactive under standard conditions, it does form compounds with most elements. Hydrogen can form compounds with elements that are more electronegative, such as halogens, or oxygen; in these compounds hydrogen takes on a partial positive charge. When bonded to a more electronegative element, particularly fluorine, oxygen, or nitrogen, hydrogen can participate in a form of medium-strength noncovalent bonding with another electronegative element with a lone pair, a phenomenon called hydrogen bonding that is critical to the stability of many biological molecules. Hydrogen also forms compounds with less electronegative elements, such as metals and metalloids, where it takes on a partial negative charge. These compounds are often known as hydrides.Hydrogen forms a vast array of compounds with carbon called the hydrocarbons, and an even vaster array with heteroatoms that, because of their general association with living things, are called organic compounds. The study of their properties is known as organic chemistry and their study in the context of living organisms is known as biochemistry. By some definitions, "organic" compounds are only required to contain carbon. However, most of them also contain hydrogen, and because it is the carbon-hydrogen bond that gives this class of compounds most of its particular chemical characteristics, carbon-hydrogen bonds are required in some definitions of the word "organic" in chemistry. Millions of hydrocarbons are known, and they are usually formed by complicated pathways that seldom involve elemental hydrogen.
Hydrogen is highly soluble in many rare earth and transition metals and is soluble in both nanocrystalline and amorphous metals. Hydrogen solubility in metals is influenced by local distortions or impurities in the crystal lattice. These properties may be useful when hydrogen is purified by passage through hot palladium disks, but the gas's high solubility is a metallurgical problem, contributing to the embrittlement of many metals, complicating the design of pipelines and storage tanks.
Hydrides
Compounds of hydrogen are often called hydrides, a term that is used fairly loosely. The term "hydride" suggests that the H atom has acquired a negative or anionic character, denoted H−, and is used when hydrogen forms a compound with a more electropositive element. The existence of the hydride anion, suggested by Gilbert N. Lewis in 1916 for group 1 and 2 salt-like hydrides, was demonstrated by Moers in 1920 by the electrolysis of molten lithium hydride, producing a stoichiometric quantity of hydrogen at the anode. For hydrides other than group 1 and 2 metals, the term is quite misleading, considering the low electronegativity of hydrogen. An exception in group 2 hydrides is, which is polymeric. In lithium aluminium hydride, the anion carries hydridic centers firmly attached to the Al.Although hydrides can be formed with almost all main-group elements, the number and combination of possible compounds varies widely; for example, more than 100 binary borane hydrides are known, but only one binary aluminium hydride. Binary indium hydride has not yet been identified, although larger complexes exist.
In inorganic chemistry, hydrides can also serve as bridging ligands that link two metal centers in a coordination complex. This function is particularly common in group 13 elements, especially in boranes and aluminium complexes, as well as in clustered carboranes.
Protons and acids
Oxidation of hydrogen removes its electron and gives H+, which contains no electrons and a nucleus which is usually composed of one proton. That is why is often called a proton. This species is central to discussion of acids. Under the Brønsted–Lowry acid–base theory, acids are proton donors, while bases are proton acceptors.A bare proton,, cannot exist in solution or in ionic crystals because of its unstoppable attraction to other atoms or molecules with electrons. Except at the high temperatures associated with plasmas, such protons cannot be removed from the electron clouds of atoms and molecules, and will remain attached to them. However, the term 'proton' is sometimes used loosely and metaphorically to refer to positively charged or cationic hydrogen attached to other species in this fashion, and as such is denoted "" without any implication that any single protons exist freely as a species.
To avoid the implication of the naked "solvated proton" in solution, acidic aqueous solutions are sometimes considered to contain a less unlikely fictitious species, termed the "hydronium ion". However, even in this case, such solvated hydrogen cations are more realistically conceived as being organized into clusters that form species closer to H. Other oxonium ions are found when water is in acidic solution with other solvents.
Although exotic on Earth, one of the most common ions in the universe is the ion, known as protonated molecular hydrogen or the trihydrogen cation.
Atomic hydrogen
has investigated the use of atomic hydrogen as a rocket propellant. It could be stored in liquid helium to prevent it from recombining into molecular hydrogen. When the helium is vaporized, the atomic hydrogen would be released and combine back to molecular hydrogen. The result would be an intensely hot stream of hydrogen and helium gas. The liftoff weight of rockets could be reduced by 50% by this method.Most interstellar hydrogen is in the form of atomic hydrogen because the atoms can seldom collide and combine. They are the source of the important 21 cm hydrogen line in astronomy at 1420 MHz.
Isotopes
Hydrogen has three naturally occurring isotopes, denoted, and. Other, highly unstable nuclei have been synthesized in the laboratory but not observed in nature.- ' is the most common hydrogen isotope, with an abundance of more than 99.98%. Because the nucleus of this isotope consists of only a single proton, it is given the descriptive but rarely used formal name protium.
- ', the other stable hydrogen isotope, is known as deuterium and contains one proton and one neutron in the nucleus. All deuterium in the universe is thought to have been produced at the time of the Big Bang, and has endured since that time. Deuterium is not radioactive, and does not represent a significant toxicity hazard. Water enriched in molecules that include deuterium instead of normal hydrogen is called heavy water. Deuterium and its compounds are used as a non-radioactive label in chemical experiments and in solvents for -NMR spectroscopy. Heavy water is used as a neutron moderator and coolant for nuclear reactors. Deuterium is also a potential fuel for commercial nuclear fusion.
- is known as tritium and contains one proton and two neutrons in its nucleus. It is radioactive, decaying into helium-3 through beta decay with a half-life of 12.32 years. It is so radioactive that it can be used in luminous paint, making it useful in such things as watches. The glass prevents the small amount of radiation from getting out. Small amounts of tritium are produced naturally by the interaction of cosmic rays with atmospheric gases; tritium has also been released during nuclear weapons tests. It is used in nuclear fusion reactions, as a tracer in isotope geochemistry, and in specialized self-powered lighting devices. Tritium has also been used in chemical and biological labeling experiments as a radiolabel.
The exotic atom muonium, composed of an antimuon and an electron, is also sometimes considered as a light radioisotope of hydrogen, due to the mass difference between the antimuon and the electron. Muonium was discovered in 1960. During the muon's lifetime, muonium can enter into compounds such as muonium chloride or sodium muonide, analogous to hydrogen chloride and sodium hydride respectively.
History
Discovery and use
In 1671, Robert Boyle discovered and described the reaction between iron filings and dilute acids, which results in the production of hydrogen gas. In 1766, Henry Cavendish was the first to recognize hydrogen gas as a discrete substance, by naming the gas from a metal-acid reaction "inflammable air". He speculated that "inflammable air" was in fact identical to the hypothetical substance called "phlogiston" and further finding in 1781 that the gas produces water when burned. He is usually given credit for the discovery of hydrogen as an element. In 1783, Antoine Lavoisier gave the element the name hydrogen when he and Laplace reproduced Cavendish's finding that water is produced when hydrogen is burned.Lavoisier produced hydrogen for his experiments on mass conservation by reacting a flux of steam with metallic iron through an incandescent iron tube heated in a fire. Anaerobic oxidation of iron by the protons of water at high temperature can be schematically represented by the set of following reactions:
Many metals such as zirconium undergo a similar reaction with water leading to the production of hydrogen.
Hydrogen was liquefied for the first time by James Dewar in 1898 by using regenerative cooling and his invention, the vacuum flask. He produced solid hydrogen the next year. Deuterium was discovered in December 1931 by Harold Urey, and tritium was prepared in 1934 by Ernest Rutherford, Mark Oliphant, and Paul Harteck. Heavy water, which consists of deuterium in the place of regular hydrogen, was discovered by Urey's group in 1932. François Isaac de Rivaz built the first de Rivaz engine, an internal combustion engine powered by a mixture of hydrogen and oxygen in 1806. Edward Daniel Clarke invented the hydrogen gas blowpipe in 1819. The Döbereiner's lamp and limelight were invented in 1823.
The first hydrogen-filled balloon was invented by Jacques Charles in 1783. Hydrogen provided the lift for the first reliable form of air-travel following the 1852 invention of the first hydrogen-lifted airship by Henri Giffard. German count Ferdinand von Zeppelin promoted the idea of rigid airships lifted by hydrogen that later were called Zeppelins; the first of which had its maiden flight in 1900. Regularly scheduled flights started in 1910 and by the outbreak of World War I in August 1914, they had carried 35,000 passengers without a serious incident. Hydrogen-lifted airships were used as observation platforms and bombers during the war.
The first non-stop transatlantic crossing was made by the British airship R34 in 1919. Regular passenger service resumed in the 1920s and the discovery of helium reserves in the United States promised increased safety, but the U.S. government refused to sell the gas for this purpose. Therefore, H2 was used in the Hindenburg airship, which was destroyed in a midair fire over New Jersey on 6 May 1937. The incident was broadcast live on radio and filmed. Ignition of leaking hydrogen is widely assumed to be the cause, but later investigations pointed to the ignition of the aluminized fabric coating by static electricity. But the damage to hydrogen's reputation as a lifting gas was already done and commercial hydrogen airship travel ceased. Hydrogen is still used, in preference to non-flammable but more expensive helium, as a lifting gas for weather balloons.
In the same year, the first hydrogen-cooled turbogenerator went into service with gaseous hydrogen as a coolant in the rotor and the stator in 1937 at Dayton, Ohio, by the Dayton Power & Light Co.; because of the thermal conductivity and very low viscosity of hydrogen gas, thus lower drag than air, this is the most common type in its field today for large generators.
The nickel hydrogen battery was used for the first time in 1977 aboard the U.S. Navy's Navigation technology satellite-2. For example, the ISS, Mars Odyssey and the Mars Global Surveyor are equipped with nickel-hydrogen batteries. In the dark part of its orbit, the Hubble Space Telescope is also powered by nickel-hydrogen batteries, which were finally replaced in May 2009, more than 19 years after launch and 13 years beyond their design life.
Role in quantum theory
Because of its simple atomic structure, consisting only of a proton and an electron, the hydrogen atom, together with the spectrum of light produced from it or absorbed by it, has been central to the development of the theory of atomic structure. Furthermore, study of the corresponding simplicity of the hydrogen molecule and the corresponding cation H2+| brought understanding of the nature of the chemical bond, which followed shortly after the quantum mechanical treatment of the hydrogen atom had been developed in the mid-1920s.One of the first quantum effects to be explicitly noticed was a Maxwell observation involving hydrogen, half a century before full quantum mechanical theory arrived. Maxwell observed that the specific heat capacity of H2 unaccountably departs from that of a diatomic gas below room temperature and begins to increasingly resemble that of a monatomic gas at cryogenic temperatures. According to quantum theory, this behavior arises from the spacing of the rotational energy levels, which are particularly wide-spaced in H2 because of its low mass. These widely spaced levels inhibit equal partition of heat energy into rotational motion in hydrogen at low temperatures. Diatomic gases composed of heavier atoms do not have such widely spaced levels and do not exhibit the same effect.
Antihydrogen is the antimatter counterpart to hydrogen. It consists of an antiproton with a positron. Antihydrogen is the only type of antimatter atom to have been produced as of 2015.
Cosmic prevalence and distribution
Hydrogen, as atomic H, is the most abundant chemical element in the universe, making up 75% of normal matter by mass and more than 90% by number of atoms. This element is found in great abundance in stars and gas giant planets. Molecular clouds of H2 are associated with star formation. Hydrogen plays a vital role in powering stars through the proton-proton reaction in case of stars with very low to approximately 1 mass of the Sun and the CNO cycle of nuclear fusion in case of stars more massive than our Sun.States
Throughout the universe, hydrogen is mostly found in the atomic and plasma states, with properties quite distinct from those of molecular hydrogen. As a plasma, hydrogen's electron and proton are not bound together, resulting in very high electrical conductivity and high emissivity. The charged particles are highly influenced by magnetic and electric fields. For example, in the solar wind they interact with the Earth's magnetosphere giving rise to Birkeland currents and the aurora. Hydrogen is found in the neutral atomic state in the interstellar medium. The large amount of neutral hydrogen found in the damped Lyman-alpha systems is thought to dominate the cosmological baryonic density of the universe up to redshift z=4.Under ordinary conditions on Earth, elemental hydrogen exists as the diatomic gas, H2. However, hydrogen gas is very rare in the Earth's atmosphere because of its light weight, which enables it to escape from Earth's gravity more easily than heavier gases. However, hydrogen is the third most abundant element on the Earth's surface, mostly in the form of chemical compounds such as hydrocarbons and water. Hydrogen gas is produced by some bacteria and algae and is a natural component of flatus, as is methane, itself a hydrogen source of increasing importance.
A molecular form called protonated molecular hydrogen is found in the interstellar medium, where it is generated by ionization of molecular hydrogen from cosmic rays. This ion has also been observed in the upper atmosphere of the planet Jupiter. The ion is relatively stable in the environment of outer space due to the low temperature and density. is one of the most abundant ions in the universe, and it plays a notable role in the chemistry of the interstellar medium. Neutral triatomic hydrogen H3 can exist only in an excited form and is unstable. By contrast, the positive hydrogen molecular ion is a rare molecule in the universe.
Production
is produced in chemistry and biology laboratories, often as a by-product of other reactions; in industry for the hydrogenation of unsaturated substrates; and in nature as a means of expelling reducing equivalents in biochemical reactions.Electrolysis of water
The electrolysis of water is a simple method of producing hydrogen. A low voltage current is run through the water, and gaseous oxygen forms at the anode while gaseous hydrogen forms at the cathode. Typically the cathode is made from platinum or another inert metal when producing hydrogen for storage. If, however, the gas is to be burnt on site, oxygen is desirable to assist the combustion, and so both electrodes would be made from inert metals. The theoretical maximum efficiency is in the range 88–94%.When determining the electrical efficiency of PEM electrolysis, the higher heat value is used. This is because the catalyst layer interacts with water as steam. As the process operates at 80 °C for PEM electrolysers the waste heat can be redirected through the system to create the steam, resulting in a higher overall electrical efficiency. The lower heat value must be used for alkaline electrolysers as the process within these electrolysers requires water in liquid form and uses alkalinity to facilitate the breaking of the bond holding the hydrogen and oxygen atoms together. The lower heat value must also be used for fuel cells, as steam is the output rather than input.
Steam reforming (Industrial Method)
Hydrogen is often produced using natural gas, which involves the removal of hydrogen from hydrocarbons at very high temperatures, with about 95% of hydrogen production coming from steam reforming around year 2000. Commercial bulk hydrogen is usually produced by the steam reforming of natural gas. This method is also known as the Bosch process and is widely used for the industrial preparation of hydrogen.At high temperatures, steam reacts with methane to yield carbon monoxide and.
This reaction is favored at low pressures but is nonetheless conducted at high pressures. This is because high-pressure is the most marketable product, and pressure swing adsorption purification systems work better at higher pressures. The product mixture is known as "synthesis gas" because it is often used directly for the production of methanol and related compounds. Hydrocarbons other than methane can be used to produce synthesis gas with varying product ratios. One of the many complications to this highly optimized technology is the formation of coke or carbon:
Consequently, steam reforming typically employs an excess of. Additional hydrogen can be recovered from the steam by use of carbon monoxide through the water gas shift reaction, especially with an iron oxide catalyst. This reaction is also a common industrial source of carbon dioxide:
Other important methods for production include partial oxidation of hydrocarbons:
and the coal reaction, which can serve as a prelude to the shift reaction above:
Hydrogen is sometimes produced and consumed in the same industrial process, without being separated. In the Haber process for the production of ammonia, hydrogen is generated from natural gas. Electrolysis of brine to yield chlorine also produces hydrogen as a co-product.
Metal-acid
Many metals react with water to produce, but the rate of hydrogen evolution depends on the metal, the pH, and the presence alloying agents. Most commonly, hydrogen evolution is induced by acids. The alkali and alkaline earth metals, aluminium, zinc, manganese, and iron react readily with aqueous acids. This reaction is the basis of the Kipp's apparatus, which once was used as a source of laboratory:In the absence of acid, the evolution of is slower. Of technological significance because iron is widely used structural material, is its anaerobic corrosion:
Many metals, e.g. aluminium, are slow to react with water because they form passivated coatings of oxides. An alloy of aluminium and gallium however does react with water.
Thermochemical
More than 200 thermochemical cycles can be used for water splitting. Many of these cycles such as the iron oxide cycle, cerium oxide–cerium oxide cycle, zinc zinc-oxide cycle, sulfur-iodine cycle, copper-chlorine cycle and hybrid sulfur cycle have been evaluated for their commercial potential to produce hydrogen and oxygen from water and heat without using electricity. A number of laboratories are developing thermochemical methods to produce hydrogen from solar energy and water.Serpentinization reaction
In deep geological conditions prevailing far away from the Earth's atmosphere, hydrogen is produced during the process of serpentinization. In this process, water protons are reduced by ferrous ions provided by fayalite. The reaction forms magnetite, quartz, and hydrogen :This reaction closely resembles the Schikorr reaction observed in anaerobic oxidation of ferrous hydroxide in contact with water.
Applications
Petrochemical industry
Large quantities of are used in the "upgrading" of fossil fuels. Key consumers of include hydrodealkylation, hydrodesulfurization, and hydrocracking. Many of these reactions can be classified as hydrogenolysis, i.e., the cleavage of bonds to carbon. Illustrative is the separation of sulfur from liquid fossil fuels:Hydrogenation
, the addition of to various substrates is conducted on a large scale. The hydrogenation of N2 to produce ammonia by the Haber-Bosch Process consumes a few percent of the energy budget in the entire industry. The resulting ammonia is used to supply the majority of the protein consumed by humans. Hydrogenation is used to convert unsaturated fats and oils to saturated fats and oils. The major application is the production of margarine. Methanol is produced by hydrogenation of carbon dioxide. It is similarly the source of hydrogen in the manufacture of hydrochloric acid. is also used as a reducing agent for the conversion of some ores to the metals.Coolant
Hydrogen is commonly used in power stations as a coolant in generators due to a number of favorable properties that are a direct result of its light diatomic molecules. These include low density, low viscosity, and the highest specific heat and thermal conductivity of all gases.Energy carrier
Hydrogen is not an energy resource, except in the hypothetical context of commercial nuclear fusion power plants using deuterium or tritium, a technology presently far from development. The Sun's energy comes from nuclear fusion of hydrogen, but this process is difficult to achieve controllably on Earth. Elemental hydrogen from solar, biological, or electrical sources requires more energy to make than is obtained by burning it, so in these cases hydrogen functions as an energy carrier, like a battery. Hydrogen may be obtained from fossil sources, but these sources are unsustainable.The energy density per unit volume of both liquid hydrogen and compressed hydrogen gas at any practicable pressure is significantly less than that of traditional fuel sources, although the energy density per unit fuel mass is higher. Nevertheless, elemental hydrogen has been widely discussed in the context of energy, as a possible future carrier of energy on an economy-wide scale. For example, sequestration followed by carbon capture and storage could be conducted at the point of production from fossil fuels. Hydrogen used in transportation would burn relatively cleanly, with some NOx emissions, but without carbon emissions. However, the infrastructure costs associated with full conversion to a hydrogen economy would be substantial. Fuel cells can convert hydrogen and oxygen directly to electricity more efficiently than internal combustion engines.
Semiconductor industry
Hydrogen is employed to saturate broken bonds of amorphous silicon and amorphous carbon that helps stabilizing material properties. It is also a potential electron donor in various oxide materials, including ZnO, SnO2, CdO, MgO, ZrO2, HfO2, La2O3, Y2O3, TiO2, SrTiO3, LaAlO3, SiO2, Al2O3, ZrSiO4, HfSiO4, and SrZrO3.Niche and evolving uses
Apart from its use as a reactant, has a variety of smaller applications. It is used as a shielding gas in welding methods such as atomic hydrogen welding. H2 is used as the rotor coolant in electrical generators at power stations, because it has the highest thermal conductivity of any gas. Liquid H2 is used in cryogenic research, including superconductivity studies. Because is lighter than air, having a little more than of the density of air, it was once widely used as a lifting gas in balloons and airships.Pure or mixed with nitrogen, hydrogen is a tracer gas for detection of minute leaks. Applications can be found in the automotive, chemical, power generation, aerospace, and telecommunications industries. Hydrogen is an authorized food additive that allows food package leak testing among other anti-oxidizing properties.
Hydrogen's rarer isotopes also each have specific applications. Deuterium is used in nuclear fission applications as a moderator to slow neutrons, and in nuclear fusion reactions. Deuterium compounds have applications in chemistry and biology in studies of reaction isotope effects. Tritium, produced in nuclear reactors, is used in the production of hydrogen bombs, as an isotopic label in the biosciences, and as a radiation source in luminous paints.
The triple point temperature of equilibrium hydrogen is a defining fixed point on the ITS-90 temperature scale at 13.8033 Kelvin.
Biological reactions
H2 is a product of some types of anaerobic metabolism and is produced by several microorganisms, usually via reactions catalyzed by iron- or nickel-containing enzymes called hydrogenases. These enzymes catalyze the reversible redox reaction between H2 and its component two protons and two electrons. Creation of hydrogen gas occurs in the transfer of reducing equivalents produced during pyruvate fermentation to water. The natural cycle of hydrogen production and consumption by organisms is called the hydrogen cycle. parts per million of H2 occurs in the breath of healthy humans. It results from the metabolic activity of hydrogenase-containing microorganisms in the large intestine.Water splitting, in which water is decomposed into its component protons, electrons, and oxygen, occurs in the light reactions in all photosynthetic organisms. Some such organisms, including the alga Chlamydomonas reinhardtii and cyanobacteria, have evolved a second step in the dark reactions in which protons and electrons are reduced to form H2 gas by specialized hydrogenases in the chloroplast. Efforts have been undertaken to genetically modify cyanobacterial hydrogenases to efficiently synthesize H2 gas even in the presence of oxygen. Efforts have also been undertaken with genetically modified alga in a bioreactor.
Safety and precautions
Hydrogen poses a number of hazards to human safety, from potential detonations and fires when mixed with air to being an asphyxiant in its pure, oxygen-free form. In addition, liquid hydrogen is a cryogen and presents dangers associated with very cold liquids. Hydrogen dissolves in many metals and in addition to leaking out, may have adverse effects on them, such as hydrogen embrittlement, leading to cracks and explosions. Hydrogen gas leaking into external air may spontaneously ignite. Moreover, hydrogen fire, while being extremely hot, is almost invisible, and thus can lead to accidental burns.Even interpreting the hydrogen data is confounded by a number of phenomena. Many physical and chemical properties of hydrogen depend on the parahydrogen/orthohydrogen ratio. Hydrogen detonation parameters, such as critical detonation pressure and temperature, strongly depend on the container geometry.