EIF2
Eukaryotic Initiation Factor 2 is a eukaryotic initiation factor. It is required for most forms of eukaryotic translation initiation. eIF2 mediates the binding of tRNAiMet to the ribosome in a GTP-dependent manner. eIF2 is a heterotrimer consisting of an alpha, a beta, and a gamma subunit.
Once the initiation phase has completed, eIF2 is released from the ribosome bound to GDP as an inactive binary complex. To participate in another round of translation initiation, this GDP must be exchanged for GTP.
Function
eIF2 is an essential factor for protein synthesis that forms a ternary complex with GTP and the initiator Met-tRNAiMet. After its formation, the TC binds the 40S ribosomal subunit to form the 43S preinitiation complex. 43S PIC assembly is believed to be stimulated by the initiation factors eIF1, eIF1A, and the eIF3 complex according to in vitro experiments. The 43S PIC then binds mRNA that has previously been unwound by the eIF4F complex. The 43S PIC and the eIF4F proteins form a new 48S complex on the mRNA, which starts searching along the mRNA for the start codon. Upon base pairing of the AUG-codon with the Met-tRNA, eIF5 is recruited to the complex and induces eIF2 to hydrolyse its GTP. This causes eIF2-GDP to be released from this 48S complex and translation begins after recruitment of the 60S ribosomal sub-unit and formation of the 80S initiation complex. Finally, with the help of the Guanine nucleotide exchange factor eIF2B, the GDP in eIF2 is exchanged for a GTP and the ternary complex reforms for a new round of translation initiation.Structure
eIF2 is a heterotrimer of a total molar mass of 126 kDa that is composed of the three sub-units: α, β, and γ.The sequences of all three sub-units are highly conserved.
sub-unit | Alpha | Beta | Gamma |
Molecular Weight / kDa | 36 | 38 | 52 |
Similarity | eIF2-alpha family | eIF2-beta / eIF5 family | GTP-binding elongation factor family |
Interactions | Binding of eIF5, eIF2B and RNA | Binding of GTP and RNA |
The α-subunit contains the main target for phosphorylation, a serine at position 51. It also contains a S1 motif domain, which is a potential RNA binding-site. Therefore, the α-subunit can be considered the regulatory subunit of the trimer.
The β-subunit contains multiple phosphorylation sites. What is important to consider is that there are also three lysine clusters in the N-terminal domain, which are important for the interaction with eIF2B. Moreover, the sequence of the protein comprises a zinc finger motif that was shown to play a role in both ternary complex and 43S preinitiation complex formation. There are also two guanine nucleotide-binding sequences that have not been shown to be involved in the regulation of eIF2 activity. The β-subunit is also believed to interact with both tRNA and mRNA.
The γ-subunit comprises three guanine nucleotide-binding sites and is known to be the main docking site for GTP/GDP. It also contains a tRNA-binding cavity that has been shown by X-ray crystallography. A zinc knuckle motif is able to bind one Zn2+ cation. It is related to some elongation factors like EF-Tu.