DOCSIS
Data Over Cable Service Interface Specification is an international telecommunications standard that permits the addition of high-bandwidth data transfer to an existing cable television system. It is used by many cable television operators to provide Internet access over their existing hybrid fiber-coaxial infrastructure. The version numbers are sometimes prefixed with simply "D" instead of "DOCSIS".
History
DOCSIS was developed by CableLabs and contributing companies, including 3Com, ARRIS, BigBand Networks, Broadcom, Cisco, Comcast, Conexant, Correlant, Cox, Harmonic, Hitron Technologies, Intel, Motorola, Netgear, Technicolor, Terayon, Time Warner Cable, and Texas Instruments.Versions
- : Released in March 1997, DOCSIS 1.0 included functional elements from preceding proprietary cable modems.
- : Released in April 1999, DOCSIS 1.1 standardized quality of service mechanisms that were outlined in DOCSIS 1.0.
- : Released in December 2001, DOCSIS 2.0 enhanced upstream data rates in response to increased demand for symmetric services such as IP telephony.
- : Released in August 2006, DOCSIS 3.0 significantly increased data rates and introduced support for Internet Protocol version 6.
- : First released in October 2013, and updated several times since, the DOCSIS 3.1 suite of specifications support capacities of up to 10 Gbit/s downstream and 1 Gbit/s upstream using 4096 QAM. The new specs do away with 6 MHz and 8 MHz wide channel spacing and instead use narrower orthogonal frequency-division multiplexing subcarriers; these can be bonded inside a block spectrum that could end up being about 200 MHz wide. DOCSIS 3.1 technology also includes some new energy management features that will help the cable industry reduce its energy usage, and the DOCSIS-PIE algorithm to reduce bufferbloat. In the United States, broadband provider Comcast announced in February 2016 that several cities within its footprint will have DOCSIS 3.1 availability before the end of the year. At the end of 2016, Mediacom announced it would become the first major U.S. cable company to fully transition to the DOCSIS 3.1 platform.
- : Improves DOCSIS 3.1 to use the full spectrum of the cable plant at the same time in both upstream and downstream directions. This technology enables multi-gigabit symmetrical services while remaining backwards compatible with DOCSIS 3.1. CableLabs released the full specification in October 2017. Previously branded as DOCSIS 3.1 Full Duplex, these technologies have been rebranded as part of DOCSIS 4.0.
Comparison
In 1994, 802.14 was chartered to develop a media access control over an HFC. In 1995, Multimedia Cable Network System was formed. The original partners were: TCI, Time Warner, Comcast, COX. Later, Continental and Rogers joined the group. In June 1996, SCTE formed the Data Standards Subcommittee to begin work on establishing national standards for high-speed data over cable plant. July 1997: SCTE DSS voted in the affirmative on document DSS 97-2. This standard is based on the well-known specification. The standard was also submitted to International Telecommunications Union Telecommunications Standardization Sector and has been adopted as ITU-T J.112 Annex B.DOCSIS version | Production date | Maximum downstream capacity | Maximum upstream capacity | Features |
1.0 | 1997 | 40 Mbit/s | 10 Mbit/s | Initial release |
1.1 | 2001 | 40 Mbit/s | 10 Mbit/s | Added VOIP capabilities and QoS mechanisms |
2.0 | 2002 | 40 Mbit/s | 30 Mbit/s | Enhanced upstream data rates |
3.0 | 2006 | 1 Gbit/s | 200 Mbit/s | Significantly increased downstream/upstream data rates, introduced support for IPv6, introduced channel bonding |
3.1 | 2013 | 10 Gbit/s | 1-2 Gbit/s | Significantly increased downstream/upstream data rates, restructured channel specifications |
4.0 | 2017 | 10 Gbit/s | 6 Gbit/s | Significantly increased upstream data rates |
European alternative
As frequency allocation bandwidth plans differ between United States and European CATV systems, DOCSIS standards earlier than 3.1 have been modified for use in Europe. These modifications were published under the name EuroDOCSIS. The differences between the bandwidths exist because European cable TV conforms to PAL/DVB-C standards of 8 MHz RF channel bandwidth and North American cable TV conforms to NTSC/ATSC standards which specify 6 MHz per channel. The wider channel bandwidth in EuroDOCSIS architectures permits more bandwidth to be allocated to the downstream data path. EuroDOCSIS certification testing is executed by Belgian company Excentis, while DOCSIS certification testing is executed by CableLabs. Typically, customer premises equipment receives "certification", while CMTS equipment receives "qualification".International standards
The ITU Telecommunication Standardization Sector has approved the various versions of DOCSIS as international standards. DOCSIS 1.0 was ratified as ITU-T Recommendation J.112 Annex B, but it was superseded by DOCSIS 1.1 which was ratified as ITU-T Recommendation Annex B. Subsequently, DOCSIS 2.0 was ratified as ITU-T Recommendation . Most recently, DOCSIS 3.0 was ratified as ITU-T Recommendation J.222.Note: While ITU-T Recommendation J.112 Annex B corresponds to DOCSIS/EuroDOCSIS 1.1, Annex A describes an earlier European cable modem system based on ATM transmission standards. Annex C describes a variant of DOCSIS 1.1 that is designed to operate in Japanese cable systems. The ITU-T Recommendation J.122 main body corresponds to DOCSIS 2.0, J.122 Annex F corresponds to EuroDOCSIS 2.0, and J.122 Annex J describes the Japanese variant of DOCSIS 2.0.
Features
DOCSIS provides great variety in options available at Open Systems Interconnection layers 1 and 2, the physical and data link layers.Physical layer
- Channel width:
- * Downstream: All versions of DOCSIS earlier than 3.1 use either 6 MHz channels or 8 MHz channels.
- * Upstream: DOCSIS 1.0/1.1 specifies channel widths between 200 kHz and 3.2 MHz. DOCSIS 2.0 & 3.0 specify 6.4 MHz, but can use the earlier, narrower channel widths for backward compatibility.
- Modulation:
- * Downstream: All versions of DOCSIS prior to 3.1 specify that 64-level or 256-level QAM be used for modulation of downstream data, using the ITU-T J.83-Annex B standard for 6 MHz channel operation, and the DVB-C modulation standard for 8 MHz operation. DOCSIS 3.1 adds 16-QAM, 128-QAM, 512-QAM, 1024-QAM, 2048-QAM and 4096-QAM, with optional support of 8192-QAM/16384-QAM.
- * Upstream: Upstream data uses QPSK or 16-level QAM for DOCSIS 1.x, while QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM are used for DOCSIS 2.0 & 3.0. DOCSIS 2.0 & 3.0 also support 128-QAM with trellis coded modulation in S-CDMA mode. DOCSIS 3.1 supports data modulations from QPSK up to 1024-QAM, with optional support for 2048-QAM and 4096-QAM.
Data link layer
- DOCSIS employs a mixture of deterministic access methods for upstream transmissions, specifically TDMA for DOCSIS 1.0/1.1 and both TDMA and S-CDMA for DOCSIS 2.0 and 3.0, with a limited use of contention for bandwidth requests. Because of this, DOCSIS systems experience relatively few collisions, in contrast to the pure contention-based MAC CSMA/CD employed in older Ethernet systems.
- For DOCSIS 1.1 and above, the data layer also includes extensive quality-of-service features that help to efficiently support applications that have specific traffic requirements such as low latency, e.g. voice over IP.
- DOCSIS 3.0 features channel bonding, which enables multiple downstream and upstream channels to be used together at the same time by a single subscriber.
Throughput
DOCSIS 3.1 supports a downstream throughput with 4096-QAM and 25 kHz subcarrier spacing of up to 1.89 Gbit/s per 192 MHz OFDM channel. The upstream throughput possible is 0.94 Gbit/s per 96 MHz OFDMA channel.
Network layer
- DOCSIS modems are managed via an Internet Protocol address.
- The 'DOCSIS 2.0 + IPv6' specification allowed support for IPv6 on DOCSIS 2.0 modems via a firmware upgrade.
- DOCSIS 3.0 added management over IPv6.
Throughput
For DOCSIS 3.0, the theoretical maximum throughput for the number of bonded channels are listed in the table below.
Note that the number of channels a cable system can support is dependent on how the cable system is set up. For example, the amount of available bandwidth in each direction, the width of the channels selected in the upstream direction, and hardware constraints limit the maximum amount of channels in each direction. Also note that, since in many cases, DOCSIS capacity is shared among multiple users, most cable companies do not sell the maximum technical capacity available as a commercial product, to reduce congestion in case of heavy usage.
Note that the maximum downstream bandwidth on all versions of DOCSIS depends on the version of DOCSIS used and the number of upstream channels used if DOCSIS 3.0 is used, but the upstream channel widths are independent of whether DOCSIS or EuroDOCSIS is used.
Equipment
A DOCSIS architecture includes two primary components: a cable modem located at the customer premises, and a cable modem termination system located at the CATV headend. Cable systems supporting on-demand programming use a hybrid fiber-coaxial system. Fiber optic lines bring digital signals to nodes in the system where they are converted into RF channels and modem signals on coaxial trunk lines.A typical CMTS is a device which hosts downstream and upstream ports used in a digital subscriber line. While downstream and upstream communications travel on a shared coax line in the customer premises, and connect to a single F connector on the cable modem, it is typical for the CMTS to have separate F connectors for downstream and for upstream communication. This allows flexibility for the cable operator. Because of the noise in the return path, an upstream port is usually connected to a single neighborhood, whereas a downstream port is usually shared across a small number of neighborhoods. Thus, there are generally more upstream ports than downstream ports on a CMTS. A typical CMTS has four or six upstream ports per downstream port.
Before a cable company can deploy DOCSIS 1.1 or above, it must upgrade its hybrid fiber-coaxial network to support a return path for upstream traffic. Without a return path, the old DOCSIS 1.0 standard still allows use of data over cable system, by implementing the return path over the plain old telephone service. If the HFC is already "two-way" or "interactive", chances are high that DOCSIS 1.1 or higher can be implemented.
The customer PC and associated peripherals are termed customer-premises equipment. The CPE are connected to the cable modem, which is in turn connected through the HFC network to the cable modem termination system. The CMTS then routes traffic between the HFC and the Internet. Using the CMTS, the cable operator exercises full control over the cable modem's configuration; the CM configuration is changed to adjust for varying line conditions and customer service requirements.
DOCSIS 2.0 is also used over microwave frequencies in Ireland by Digiweb, using dedicated wireless links rather than HFC network. At each subscriber premises the ordinary CM is connected to an antenna box which converts to/from microwave frequencies and transmits/receives on 10 GHz. Each customer has a dedicated link but the transmitter mast must be in line of sight.
The DOCSIS architecture is also used for fixed wireless with equipment using the 2.5–2.7 GHz Multichannel Multipoint Distribution Service microwave band in the U.S.
Security
DOCSIS includes media access control layer security services in its Baseline Privacy Interface specifications. DOCSIS 1.0 used the initial Baseline Privacy Interface specification. BPI was later improved with the release of the Baseline Privacy Interface Plus specification used by DOCSIS 1.1 and 2.0. Most recently, a number of enhancements to the Baseline Privacy Interface were added as part of DOCSIS 3.0, and the specification was renamed "Security".The intent of the BPI/SEC specifications is to describe MAC layer security services for DOCSIS CMTS to cable modem communications. BPI/SEC security goals are twofold:
- Provide cable modem users with data privacy across the cable network
- Provide cable service operators with service protection
Security in the DOCSIS network is vastly improved when only business critical communications are permitted, and end user communication to the network infrastructure is denied. Successful attacks often occur when the CMTS is configured for backwards compatibility with early pre-standard DOCSIS 1.1 modems. These modems were "software upgradeable in the field", but did not include valid DOCSIS or EuroDOCSIS root certificates.