Cathedral Peak Granodiorite


The Cathedral Peak Granodiorite was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.

Geographic situation

The Cathedral Peak Granodiorite forms part of the central eastern Sierra Nevada in California. It is exposed in glaciated outcrops from the upper Yosemite Valley into the high Sierra Divide. It covers large parts of Mariposa County and Tuolumne County and also touches Madera County and Mono County. At its northern end it includes Tower Peak and Matterhorn Peak, at 12,264 feet its highest elevation. In its southwestern section rises the Cathedral Range with the 10,911 feet Cathedral Peak above Tuolumne Meadows. California State Route 120 traverses the granodiorite in its southern half. Due to the block-faulting and tilting of the Sierra Nevada to the west its drainage system is oriented to the west and follows mainly southwesterly courses, especially in the northern section.
The shape of the intrusion is a drawn-out rectangle or ellipse oriented roughly in the NNW-SSE-direction. Its long dimension measures about, its width hardly reaches at the northern end. The surface area amounts to about, roughly half of the total area of the Tuolumne Intrusive Suite. The granodiorite completely engulfes the Johnson Granite Porphyry in the south. It is surrounded in the southeast, southwest and northwest by the Half Dome Granodiorite. In its central belt region it touches the Kuna Crest Granodiorite. In the north and northeast it comes into contact with weakly metamorphosed country rocks, mainly Paleozoic and Jurassic metavolcanics and metasediments.

Geological overview

The Cathedral Peak Granodiorite is the third and most important intrusive pulse of the Tuolumne Intrusive Suite. The intrusions of this magmatic suite were spaced out over quite a long period. They started in the Turonian at about 93.5 million years BP and lasted right to the beginning of the Santonian at 85.4 million years BP. Radiometric dating of the cooling ages of the Cathedral Peak Granodiorite yielded 88.1 ± 0.2 down to 87.0 ± 0.7 million years BP, i.e. Coniacian.
The Tuolumne Intrusive Suite is accompanied by other major intrusive complexes in the Sierra Nevada: the John Muir and Mount Whitney intrusive suites, both further south and the Sonora Plutonic Complex to the north. The surface area of these four complexes surpasses.
The Tuolumne Intrusive Suite was constructed over a long time span of 8.1 million years by the following magmatic pulses :
This magmatic sequence shows the following geochronological and geochemical trends:
The immediately apparent trait of the grey-white Cathedral Peak Granodiorite is its porphyritic habit with very large megacrysts of alkali feldspar commonly reaching 10, occasionally even 20 centimeters. The grain size of the groundmass stays in the 5 millimeter range.

Mineralogy

The Cathedral Peak Granodiorite is modally composed of the following minerals:
The following analyses by Bateman & Chappell and an average value from 18 analyses by Burgess & Miller are meant to demonstrate the chemical composition of the Cathedral Peak Granodiorite:
Oxide
Weight %
Bateman & ChappellAverage
Burgess & Miller
CIPW Norm
Percent
Bateman & ChappellAverageTrace elements
ppm
Average
Burgess & Miller
SiO269,6070,29 Q24,5225,58Pb17,5
TiO20,380,41 Or21,6720,64Cu4,9
Al2O315,3415,37 Ab36,7935,81Ni3,0
Fe2O31,301,40An11,8512,57Cr3,3
FeO0,951,03Di0,570,37V41,4
MnO0,060,06 Hy1,631,82Zr135,9
MgO0,700,72 Mt1,872,01Y8,3
CaO2,682,82 Il0,730,77Sr633,2
Na2O4,314,24 Ap0,320,36Ba748,0
K2O3,643,50 Rb132,5
P2O50,140,16 Nb7,8
Mg#0,550,54Sc3,6
A'/F0,080,11Ga20,9
Al/K+Na+Ca0,960,97Zn57,8

Compared with an average granodiorite the Cathedral Peak Granodiorite has a much higher silica content, shows elevated alkali values and is therefore a member of the shoshonitic high-K series. The rock is metaluminous, rich in sodium and belongs to the intrusive, mantle source-derived I-type granitoids. It is a typical calc-alkaline rock from the root zone of an ancient volcanic arc and associated with a subduction-type environment.
The trace elements demonstrate an enrichment in barium and strontium, nickel and chromium on the other hand have very low concentrations. The light rare earth elements LREE are also elevated but without a europium anomaly.
Another source gives: Estimates from petrographic observation of average mineral proportion of non-layered rocks of Half Dome Granodiorite:

Structures

The Cathedral Peak Granodiorite reveals the following structures of magmatic origin:
Structures that imply tectonic movements are signs of cataclasis:
Structures that strongly hint at later-stage metasomatic changes are:
Taken together all these structural phenomena reveal a very complex evolution of the Cathedral Peak Granodiorite showing the succession of magmatic, tectonic and metasomatic stages – and most likely their occasional synergy and interdependence.

Formation and origin

Originally petrologists favoured a single magma chamber model for the genesis of the Tuolumne Intrusive Suite which underwent fractional crystallization and successively produced the different rock types like the Cathedral Peak Granodiorite. This somewhat simplistic model is now being questioned as underlined by the following facts:
Isotope ratios favour the mixing of two magmas, one with mantle affinities and another one with more felsic compositions approaching the Johnson Granite Porphyry in composition.
Thermobarometric data document an intrusion depth of 6 kilometers and a crystallization temperature range between 750 and 660 °C.
Feldspars, hornblende, biotite and magnetite often show unmixing in the lower temperature subsolidus region.
The Cathedral Peak Granodiorite cannot always be clearly distinguished from the porphyritic Half Dome Granodiorite in the field, at some places it shows gradual merging over about a hundred meters and apophyses are observed branching into the Half Dome rocks. The geochemical parameters of the two granodiorites also overlap, differences are mainly textural. They form a continuum and therefore cannot be clearly separated as two distinctive intrusive pulses. The contact relationships with the Johnson Granite Porphyry are on the other hand sharp.
The origin of the microcline in shear zones poses another problem. M.D. Higgins favours the possibility of recrystallization based on Ostwald ripening via metasomatic fluids. L.G. Collins supports a metasomatic subsolidus growth that has been initiated by ongoing tectonic cataclasis. To be fully effective this process is dependent on the cataclastic breaking-up of the original crystals as realized in a ductile shear zone along the eastern edge of the Cathedral Peak Granodiorite.