Apatite


Apatite is a group of phosphate minerals, usually referring to hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH, F and Cl ions, respectively, in the crystal. The formula of the admixture of the three most common endmembers is written as Ca1062, and the crystal unit cell formulae of the individual minerals are written as Ca1062, Ca106F2 and Ca106Cl2.
The mineral was named apatite by the German geologist Abraham Gottlob Werner in 1786, although the specific mineral he had described was reclassified as fluorapatite in 1860 by the German mineralogist Karl Friedrich August Rammelsberg. Apatite is often mistaken for other minerals. This tendency is reflected in the mineral's name, which is derived from the Greek word απατείν, which means to deceive or to be misleading.

Geology

Apatite is found in sedimentary, metamorphic, igneous, and volcanic rocks. Apatite can form in sedimentary processes, igneous processes, metamorphic processes, and in hydrothermal vents, as well as production by biological systems.
Apatite is one of a few minerals produced and used by biological micro-environmental systems. Apatite is the defining mineral for 5 on the Mohs scale. Hydroxyapatite, also known as hydroxylapatite, is the major component of tooth enamel and bone mineral. A relatively rare form of apatite in which most of the OH groups are absent and containing many carbonate and acid phosphate substitutions is a large component of bone material.
Fluorapatite is more resistant to acid attack than is hydroxyapatite; in the mid-20th century, it was discovered that communities whose water supply naturally contained fluorine had lower rates of dental caries. Fluoridated water allows exchange in the teeth of fluoride ions for hydroxyl groups in apatite. Similarly, toothpaste typically contains a source of fluoride anions. Too much fluoride results in dental fluorosis and/or skeletal fluorosis.
Fission tracks in apatite are commonly used to determine the thermal histories of orogenic belts and of sediments in sedimentary basins. /He dating of apatite is also well established from noble gas diffusion studies for use in determining thermal histories and other, less typical applications such as paleo-wildfire dating.
Phosphorite is a phosphate-rich sedimentary rock, that contains between 18% and 40% P2O5. The apatite in phosphorite is present as cryptocrystalline masses referred to as collophane.

Uses

The primary use of apatite is in the manufacture of fertilizer – it is a source of phosphorus. It is occasionally used as a gemstone. Green and blue varieties, in finely divided form, are pigments with excellent covering power.
During digestion of apatite with sulfuric acid to make phosphoric acid, hydrogen fluoride is produced as a byproduct from any fluorapatite content. This byproduct is a minor industrial source of hydrofluoric acid.
Fluoro-chloro apatite forms the basis of the now obsolete Halophosphor fluorescent tube phosphor system. Dopant elements of manganese and antimony, at less than one mole-percent — in place of the calcium and phosphorus impart the fluorescence — and adjustment of the fluorine-to-chlorine ratio alter the shade of white produced. This system has been almost entirely replaced by the Tri-Phosphor system.
In the United States, apatite-derived fertilizers are used to supplement the nutrition of many agricultural crops by providing a valuable source of phosphate.
Apatites are also a proposed host material for storage of nuclear waste, along with other phosphates.

Gemology

Apatite is infrequently used as a gemstone. Transparent stones of clean color have been faceted, and chatoyant specimens have been cabochon-cut. Chatoyant stones are known as cat's-eye apatite, transparent green stones are known as asparagus stone, and blue stones have been called moroxite. If crystals of rutile have grown in the crystal of apatite, in the right light the cut stone displays a cat's-eye effect. Major sources for gem apatite are Brazil, Myanmar, and Mexico. Other sources include Canada, Czech Republic, Germany, India, Madagascar, Mozambique, Norway, South Africa, Spain, Sri Lanka, and the United States.

Use as an ore mineral

Apatite is occasionally found to contain significant amounts of rare-earth elements and can be used as an ore for those metals. This is preferable to traditional rare-earth ores such as monazite, as apatite is not very radioactive and does not pose an environmental hazard in mine tailings.
However, apatite often contains uranium and its equally radioactive decay-chain nuclides.
Apatite is an ore mineral at the Hoidas Lake rare-earth project.

Thermodynamics

The standard enthalpies of formation in the crystalline state of hydroxyapatite, chlorapatite and a preliminary value for bromapatite, have been determined by reaction-solution calorimetry. Speculations on the existence of a possible fifth member of the calcium apatites family, iodoapatite, have been drawn from energetic considerations.
Structural and thermodynamic properties of crystal hexagonal calcium apatites, Ca1062, have been investigated using an all-atom Born-Huggins-Mayer potential by a molecular dynamics technique. The accuracy of the model at room temperature and atmospheric pressure was checked against crystal structural data, with maximum deviations of c. 4% for the haloapatites and 8% for hydroxyapatite. High-pressure simulation runs, in the range 0.5-75 kbar, were performed in order to estimate the isothermal compressibility coefficient of those compounds. The deformation of the compressed solids is always elastically anisotropic, with BrAp exhibiting a markedly different behavior from those displayed by HOAp and ClAp. High-pressure p-V data were fitted to the Parsafar-Mason equation of state with an accuracy better than 1%.
The monoclinic solid phases Ca1062 and the molten hydroxyapatite compound have also been studied by molecular dynamics.

Lunar science

collected by astronauts during the Apollo program contain traces of apatite. Re-analysis of these samples in 2010 revealed water trapped in the mineral as hydroxyl, leading to estimates of water on the lunar surface at a rate of at least 64 parts per billion – 100 times greater than previous estimates – and as high as 5 parts per million. If the minimum amount of mineral-locked water was hypothetically converted to liquid, it would cover the Moon's surface in roughly one meter of water.

Bio-leaching

The ectomycorrhizal fungi Suillus granulatus and Paxillus involutus can release elements from apatite.