Zero-product property


In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, it is the following assertion:

If, then or.

The zero-product property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. All of the number systems studied in elementary mathematics — the integers, the rational numbers, the real numbers, and the complex numbers — satisfy the zero-product property. In general, a ring which satisfies the zero-product property is called a domain.

Algebraic context

Suppose is an algebraic structure. We might ask, does have the zero-product property? In order for this question to have meaning, must have both additive structure and multiplicative structure. Usually one assumes that is a ring, though it could be something else, e.g. the set of nonnegative integers with ordinary addition and multiplication, which is only a semiring.
Note that if satisfies the zero-product property, and if is a subset of, then also satisfies the zero product property: if and are elements of such that, then either or because and can also be considered as elements of.

Examples

Suppose and are univariate polynomials with real coefficients, and is a real number such that. By the zero-product property, it follows that either or. In other words, the roots of are precisely the roots of together with the roots of.
Thus, one can use factorization to find the roots of a polynomial. For example, the polynomial factorizes as ; hence, its roots are precisely 3, 1, and -2.
In general, suppose is an integral domain and is a monic univariate polynomial of degree with coefficients in. Suppose also that has distinct roots. It follows that factorizes as. By the zero-product property, it follows that are the only roots of : any root of must be a root of for some. In particular, has at most distinct roots.
If however is not an integral domain, then the conclusion need not hold. For example, the cubic polynomial has six roots in .