Wild number
Originally, wild numbers are the numbers supposed to belong to a fictional sequence of numbers imagined to exist in the mathematical world of the mathematical fiction The Wild Numbers authored by Philibert Schogt, a Dutch philosopher and mathematician. Even though Schogt has given a definition of the wild number sequence in his novel, it is couched in a deliberately imprecise language that the definition turns out to be no definition at all. However, the author claims that the first few members of the sequence are 11, 67, 2, 4769, 67. Later, inspired by this wild and erratic behaviour of the fictional wild numbers, American mathematician J. C. Lagarias used the terminology to describe a precisely defined sequence of integers which shows somewhat similar wild and erratic behaviour. Lagaria's wild numbers are connected with the Collatz conjecture and the concept of the 3x + 1 semigroup. The original fictional sequence of wild numbers has found a place in the On-Line Encyclopedia of Integer Sequences.
The wild number problem
In the novel The Wild Numbers, The Wild Number Problem is formulated as follows:- Beauregard had defined a number of deceptively simple operations, which, when applied to a whole number, at first resulted in fractions. But if the same steps were repeated often enough, the eventual outcome was once again a whole number. Or, as Beauregard cheerfully observed: “In all numbers lurks a wild number, guaranteed to emerge when you provoke them long enough”. 0 yielded the wild number 11, 1 brought forth 67, 2 itself, 3 suddenly manifested itself as 4769, 4, surprisingly, brought forth 67 again. Beauregard himself had found fifty different wild numbers. The money prize was now awarded to whoever found a new one.
History of The Wild Number Problem
The novel The Wild Numbers has constructed a fictitious history for The Wild Number Problem. The important milestones in this history can be summarised as follows.Date | Event |
1823 | Anatole Millechamps de Beauregard poses the Wild Number Problem in its original form. |
1830s | The problem is generalised: How many wild numbers are there? Are there infinitely many wild numbers? It was conjectured that all numbers are wild. |
1907 | Heinrich Riedel disproves the conjecture by showing that 3 is not a wild number. Later he also proves that there are infinitely many non-wild numbers. |
Early 1960s | Dimitri Arkanov sparks renewed interest in the almost forgotten problem by discovering a fundamental relationship between wild numbers and prime numbers. |
The present | Isaac Swift finds a solution. |