Voltammetry
Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. The analytical data for a voltammetric experiment comes in the form of a voltammagram which plots the current produced by the analyte versus the potential of the working electrode.
Three electrode system
Voltammetry experiments investigate the half-cell reactivity of an analyte. Voltammetry is the study of current as a function of applied potential.These curves I = f are called voltammograms.
The potential is varied arbitrarily either step by step or continuously, and the actual current value is measured as the dependent variable.
The opposite, i.e., amperometry, is also possible but not common.
The shape of the curves depends on the speed of potential variation and on whether the solution is stirred or quiescent.
Most experiments control the potential of an electrode in contact with the analyte while measuring the resulting current.
To conduct such an experiment one requires at least two electrodes. The working electrode, which makes contact with the analyte, must apply the desired potential in a controlled way and facilitate the transfer of charge to and from the analyte. A second electrode acts as the other half of the cell. This second electrode must have a known potential with which to gauge the potential of the working electrode, furthermore it must balance the charge added or removed by the working electrode. While this is a viable setup, it has a number of shortcomings. Most significantly, it is extremely difficult for an electrode to maintain a constant potential while passing current to counter redox events at the working electrode.
To solve this problem, the roles of supplying electrons and providing a reference potential are divided between two separate electrodes. The reference electrode is a half cell with a known reduction potential. Its only role is to act as reference in measuring and controlling the working electrode's potential and at no point does it pass any current. The auxiliary electrode passes all the current needed to balance the current observed at the working electrode. To achieve this current, the auxiliary will often swing to extreme potentials at the edges of the solvent window, where it oxidizes or reduces the solvent or supporting electrolyte. These electrodes, the working, reference, and auxiliary make up the modern three electrode system.
There are many systems which have more electrodes, but their design principles are generally the same as the three electrode system. For example, the rotating ring-disk electrode has two distinct and separate working electrodes, a disk and a ring, which can be used to scan or hold potentials independently of each other. Both of these electrodes are balanced by a single reference and auxiliary combination for an overall four electrode design. More complicated experiments may add working electrodes as required and at times reference or auxiliary electrodes.
In practice it can be important to have a working electrode with known dimensions and surface characteristics. As a result, it is common to clean and polish working electrodes regularly. The auxiliary electrode can be almost anything as long as it doesn't react with the bulk of the analyte solution and conducts well. It is common to use mercury as working electrode e.g. DME and HMDE, and also as auxiliary, and the voltammetry method is then known as polarography. The reference is the most complex of the three electrodes; there are a variety of standards used and it is worth investigating elsewhere. For non-aqueous work, IUPAC recommends the use of the ferrocene/ferrocenium couple as an internal standard. In most voltammetry experiments, a bulk electrolyte is used to minimize solution resistance. It is possible to run an experiment without a bulk electrolyte, but the added resistance greatly reduces the accuracy of the results. With room temperature ionic liquids, the solvent can act as the electrolyte.
Theory
Data analysis requires the consideration of kinetics in addition to thermodynamics, due to the temporal component of voltammetry. Idealized theoretical electrochemical thermodynamic relationships such as the Nernst equation are modeled without a time component. While these models are insufficient alone to describe the dynamic aspects of voltammetry, models like the Tafel equation and Butler–Volmer equation lay the groundwork for the modified voltammetry relationships that relate theory to observed results.Types of voltammetry
- Linear sweep voltammetry
- Staircase voltammetry
- Squarewave voltammetry
- Cyclic voltammetry - A voltammetric method that can be used to determine diffusion coefficients and half cell reduction potentials.
- Anodic stripping voltammetry - A quantitative, analytical method for trace analysis of metal cations. The analyte is deposited onto the working electrode during a deposition step, and then oxidized during the stripping step. The current is measured during the stripping step.
- Cathodic stripping voltammetry - A quantitative, analytical method for trace analysis of anions. A positive potential is applied, oxidizing the mercury electrode and forming insoluble precipitates of the anions. A negative potential then reduces the deposited film into solution.
- Adsorptive stripping voltammetry - A quantitative, analytical method for trace analysis. The analyte is deposited simply by adsorption on the electrode surface, then electrolyzed to give the analytical signal. Chemically modified electrodes are often used.
- Alternating current voltammetry
- Polarography - a subclass of voltammetry where the working electrode is a dropping mercury electrode, useful for its wide cathodic range and renewable surface.
- Rotated electrode voltammetry - A hydrodynamic technique in which the working electrode, usually a rotating disk electrode or rotating ring-disk electrode, is rotated at a very high rate. This technique is useful for studying the kinetics and electrochemical reaction mechanism for a half reaction.
- Normal pulse voltammetry
- Differential pulse voltammetry
- Chronoamperometry
History
In 1942 Archie Hickling built the first three electrodes potentiostat, which was an advancement for the field of electrochemistry. He used this potentiostat to control the voltage of an electrode. In the meantime, the late 1940s, Kenneth Cole invented an electronic circuit which he called a voltage clamp. The voltage clamp was used to analyze the ionic conduction in nerves.
The 1960s and 1970s saw many advances in the theory, instrumentation, and the introduction of computer added and controlled systems. Modern polarographic and voltammetric methods on mercury electrodes came about in three sections.
The first section includes the development of the mercury electrodes. The following electrodes were produced: dropping mercury electrode, mercury steaming electrode, hanging mercury drop electrode, static mercury drop electrode, mercury film electrode, mercury amalgam electrodes, mercury microelectrodes, chemically modified mercury electrodes, controlled growth mercury electrodes, and contractible mercury drop electrodes.
There was also an advancement of the measuring techniques used. These measuring techniques include : classical DC polarography, oscillopolarography, Kaloussek's switcher, AC polarography, tast polarography, normal pulse polarography, differential pulse polarography, square-wave voltammetry, cyclic voltammetry, anodic stripping voltammetry, convolution techniques, and elimination methods.
Lastly, there was also an advancement of preconcentration techniques that produced an increased the sensitivity of the mercury electrodes. This came about through the development of anodic stripping voltammetry, cathodic stripping voltammetry and adsorptive stripping voltammetry.
These advancements improved sensitivity and created new analytical methods, which prompted the industry to respond with the production of cheaper potentiostat, electrodes, and cells that could be effectively used in routine analytical work.