Historically, the different chemical industries were regarded as different industrial processes and with different principles. Arthur Dehon Little propounded the concept of "unit operations" to explain industrial chemistry processes in 1916. In 1923, William H. Walker, Warren K. Lewis and William H. McAdams wrote the book The Principles of Chemical Engineering and explained that the variety of chemical industries have processes which follow the same physical laws. They summed up these similar processes into unit operations. Each unit operation follows the same physical laws and may be used in all relevant chemical industries. For instance, the same engineering is required to design a mixer for either napalm or porridge, even if the use, market or manufacturers are very different. The unit operations form the fundamental principles of chemical engineering.
Chemical engineering unit operations also fall in the following categories which involve elements from more than one class:
Combination
Separation
Reaction
Furthermore, there are some unit operations which combine even these categories, such as reactive distillation and stirred tank reactors. A "pure" unit operation is a physical transport process, while a mixed chemical/physical process requires modeling both the physical transport, such as diffusion, and the chemical reaction. This is usually necessary for designing catalytic reactions, and is considered a separate discipline, termed chemical reaction engineering. Chemical engineering unit operations and chemical engineering unit processing form the main principles of all kinds of chemical industries and are the foundation of designs of chemical plants, factories, and equipment used. In general, unit operations are designed by writing down the balances for the transported quantity for each elementary component in the form of equations, and solving the equations for the design parameters, then selecting an optimal solution out of the several possible and then designing the physical equipment. For instance, distillation in a plate column is analyzed by writing down the mass balances for each plate, wherein the known vapor-liquid equilibrium and efficiency, drip out and drip in comprise the total mass flows, with a sub-flow for each component. Combining a stack of these gives the system of equations for the whole column. There is a range of solutions, because a higher reflux ratio enables fewer plates, and vice versa. The engineer must then find the optimal solution with respect to acceptable volume holdup, column height and cost of construction.