Uniform polyhedron compound
A uniform polyhedron compound is a polyhedral compound whose constituents are identical uniform polyhedra, in an arrangement that is also uniform, i.e. the symmetry group of the compound acts transitively on the compound's vertices.
The uniform polyhedron compounds were first enumerated by John Skilling in 1976, with a proof that the enumeration is complete. The following table lists them according to his numbering.
The prismatic compounds of -gonal prisms UC20 and UC21 exist only when > 2, and when p and q are coprime. The prismatic compounds of -gonal antiprisms UC22, UC23, UC24 and UC25 exist only when >, and when p and q are coprime. Furthermore, when = 2, the antiprisms degenerate into tetrahedra with digonal bases.
Compound | Bowers acronym | Picture | Polyhedral count | Polyhedral type | Faces | Edges | Vertices | Notes | Symmetry group | Subgroup restricting to one constituent |
UC01 | sis | 6 | tetrahedra | 24 | 36 | 24 | Rotational freedom | Td | S4 | |
UC02 | dis | 12 | tetrahedra | 48 | 72 | 48 | Rotational freedom | Oh | S4 | |
UC03 | snu | 6 | tetrahedra | 24 | 36 | 24 | Oh | D2d | ||
UC04 | so | 2 | tetrahedra | 8 | 12 | 8 | Regular | Oh | Td | |
UC05 | ki | 5 | tetrahedra | 20 | 30 | 20 | Regular | I | T | |
UC06 | e | 10 | tetrahedra | 40 | 60 | 20 | Regular 2 polyhedra per vertex | Ih | T | |
UC07 | risdoh | 6 | cubes | 72 | 48 | Rotational freedom | Oh | C4h | ||
UC08 | rah | 3 | cubes | 36 | 24 | Oh | D4h | |||
UC09 | rhom | 5 | cubes | 30 | 60 | 20 | Regular 2 polyhedra per vertex | Ih | Th | |
UC10 | dissit | 4 | octahedra | 48 | 24 | Rotational freedom | Th | S6 | ||
UC11 | daso | 8 | octahedra | 96 | 48 | Rotational freedom | Oh | S6 | ||
UC12 | sno | 4 | octahedra | 48 | 24 | Oh | D3d | |||
UC13 | addasi | 20 | octahedra | 240 | 120 | Rotational freedom | Ih | S6 | ||
UC14 | dasi | 20 | octahedra | 240 | 60 | 2 polyhedra per vertex | Ih | S6 | ||
UC15 | gissi | 10 | octahedra | 120 | 60 | Ih | D3d | |||
UC16 | si | 10 | octahedra | 120 | 60 | Ih | D3d | |||
UC17 | se | 5 | octahedra | 40 | 60 | 30 | Regular | Ih | Th | |
UC18 | hirki | 5 | tetrahemihexahedra | 20 15 | 60 | 30 | I | T | ||
UC19 | sapisseri | 20 | tetrahemihexahedra | 60 | 240 | 60 | 2 polyhedra per vertex | I | C3 | |
UC20 | - | 2n | p/q-gonal prisms | 4n{p/q} 2np | 6np | 4np | Rotational freedom | Dnph | Cph | |
UC21 | - | n | p/q-gonal prisms | 2n{p/q} np | 3np | 2np | Dnph | Dph | ||
UC22 | - | 2n | p/q-gonal antiprisms | 4n{p/q} 4np | 8np | 4np | Rotational freedom | Dnpd Dnph | S2p | |
UC23 | - | n | p/q-gonal antiprisms | 2n{p/q} 2np | 4np | 2np | Dnpd Dnph | Dpd | ||
UC24 | - | 2n | p/q-gonal antiprisms | 4n{p/q} 4np | 8np | 4np | Rotational freedom | Dnph | Cph | |
UC25 | - | n | p/q-gonal antiprisms | 2n{p/q} 2np | 4np | 2np | Dnph | Dph | ||
UC26 | gadsid | 12 | pentagonal antiprisms | 120 24 | 240 | 120 | Rotational freedom | Ih | S10 | |
UC27 | gassid | 6 | pentagonal antiprisms | 60 12 | 120 | 60 | Ih | D5d | ||
UC28 | gidasid | 12 | pentagrammic crossed antiprisms | 120 24 | 240 | 120 | Rotational freedom | Ih | S10 | |
UC29 | gissed | 6 | pentagrammic crossed antiprisms | 60 12 | 120 | 60 | Ih | D5d | ||
UC30 | ro | 4 | triangular prisms | 8 12 | 36 | 24 | O | D3 | ||
UC31 | dro | 8 | triangular prisms | 16 24 | 72 | 48 | Oh | D3 | ||
UC32 | kri | 10 | triangular prisms | 20 30 | 90 | 60 | I | D3 | ||
UC33 | dri | 20 | triangular prisms | 40 60 | 180 | 60 | 2 polyhedra per vertex | Ih | D3 | |
UC34 | kred | 6 | pentagonal prisms | 30 12 | 90 | 60 | I | D5 | ||
UC35 | dird | 12 | pentagonal prisms | 60 24 | 180 | 60 | 2 polyhedra per vertex | Ih | D5 | |
UC36 | gikrid | 6 | pentagrammic prisms | 30 12 | 90 | 60 | I | D5 | ||
UC37 | giddird | 12 | pentagrammic prisms | 60 24 | 180 | 60 | 2 polyhedra per vertex | Ih | D5 | |
UC38 | griso | 4 | hexagonal prisms | 24 8 | 72 | 48 | Oh | D3d | ||
UC39 | rosi | 10 | hexagonal prisms | 60 20 | 180 | 120 | Ih | D3d | ||
UC40 | rassid | 6 | decagonal prisms | 60 12 | 180 | 120 | Ih | D5d | ||
UC41 | grassid | 6 | decagrammic prisms | 60 12 | 180 | 120 | Ih | Th | ||
UC59 | arie | 5 | cuboctahedra | 40 30 | 120 | 60 | Ih | Th | ||
UC60 | gari | 5 | cubohemioctahedra | 30 20 | 120 | 60 | Ih | Th | ||
UC61 | iddei | 5 | octahemioctahedra | 40 20 | 120 | 60 | Ih | Th | ||
UC62 | rasseri | 5 | rhombicuboctahedra | 40 | 240 | 120 | Ih | Th | ||
UC63 | rasher | 5 | small rhombihexahedra | 60 30 | 240 | 120 | Ih | Th | ||
UC64 | rahrie | 5 | small cubicuboctahedra | 40 30 30 | 240 | 120 | Ih | Th | ||
UC65 | raquahri | 5 | great cubicuboctahedra | 40 30 30{8/34 |