Topological modular forms In mathematics , topological modular forms is the name of a spectrum that describes a generalized cohomology theory . In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X , one obtains an abelian group structure on the set of homotopy classes of continuous maps from X to. One feature that distinguishes tmf is the fact that its coefficient ring ,, is almost the same as the graded ring of holomorphic modular forms with integral cusp expansions. Indeed, these two rings become isomorphic after inverting the primes 2 and 3 , but this inversion erases a lot of torsion information in the coefficient ring. The spectrum of topological modular forms is constructed as the global sections of a sheaf of E-infinity ring spectra on the moduli stack of elliptic curves . This theory has relations to the theory of modular forms in number theory , the homotopy groups of spheres , and conjectural index theories on loop spaces of manifolds. tmf was first constructed by Michael Hopkins and Haynes Miller ; many of the computations can be found in preprints and articles by Paul Goerss , Hopkins , Mark Mahowald , Miller, Charles Rezk, and Tilman Bauer.Construction The original construction of tmf uses the obstruction theory of Hopkins, Miller, and Paul Goerss, and is based on ideas of Dwyer, Kan, and Stover. In this approach, one defines a presheaf Otop of multiplicative cohomology theories on the etale site of the moduli stack of elliptic curves and shows that this can be lifted in an essentially unique way to a sheaf of E-infinity ring spectra. This sheaf has the following property: to any etale elliptic curve over a ring R, it assigns an E-infinity ring spectrum whose associated formal group is the formal group of that elliptic curve. A second construction, due to Jacob Lurie , constructs tmf rather by describing the moduli problem it represents and applying general representability theory to then show existence: just as the moduli stack of elliptic curves represents the functor that assigns to a ring the category of elliptic curves over it, the stack together with the sheaf of E-infinity ring spectra represents the functor that assigns to an E-infinity ring its category of oriented derived elliptic curves, appropriately interpreted. These constructions work over the moduli stack of smooth elliptic curves, and they also work for the Deligne-Mumford compactification of this moduli stack, in which elliptic curves with nodal singularities are included. TMF is the spectrum that results from the global sections over the moduli stack of smooth curves, and tmf is the spectrum arising as the global sections of the Deligne–Mumford compactification . TMF is a periodic version of the connective tmf. While the ring spectra used to construct TMF are periodic with period 2 , TMF itself has period 576. The periodicity is related to the modular discriminant .Relations to other parts of mathematics Some interest in tmf comes from string theory and conformal field theory . Graeme Segal first proposed in the 1980s to provide a geometric construction of elliptic cohomology as some kind of moduli space of conformal field theories , and these ideas have been continued and expanded by Stephan Stolz and Peter Teichner . Their program is to try to construct TMF as a moduli space of supersymmetric Euclidean field theories . In work more directly motivated by string theory, Edward Witten introduced the Witten genus , a homomorphism from the string bordism ring to the ring of modular forms , using equivariant index theory on a formal neighborhood of the trivial locus in the loop space of a manifold . This associates to any spin manifold with vanishing half first Pontryagin class a modular form. By work of Hopkins, Matthew Ando, Charles Rezk and Neil Strickland, the Witten genus can be lifted to topology. That is, there is a map from the string bordism spectrum to tmf such that the Witten genus is recovered as the composition of the induced map on the homotopy groups of these spectra and a map of the homotopy groups of tmf to modular forms. This allowed to prove certain divisibility statements about the Witten genus. The orientation of tmf is in analogy with the Atiyah–Bott–Shapiro map from the spin bordism spectrum to classical K-theory , which is a lift of the Dirac equation to topology.
Popular articles Javier Milei - Argentine libertarian economist, author, radio conductor and public speaker sympathetic to the Austrian School of economic thought. He became widely known for his regular ...Jimmy Carter - American politician, philanthropist, and former farmer who served as the 39th president of the United States from 1977 to 1981. A member of the Democratic Party, he previ...UEFA Euro 2024 - The 2024 UEFA European Football Championship , commonly referred to as UEFA Euro 2024 or simply Euro 2024 , will be the 17th edition of the UEFA European Championship, the quadrennial internationa...Argentina - country located mostly in the southern half of South America. Sharing the bulk of the Southern Cone with Chile to the west, the country is also b...Sam Altman - American entrepreneur, investor, programmer, and blogger. He is the former president of Y Combinator and now the CEO of OpenAI. Early life and education. ...Rosalynn Carter - American who served as First Lady of the United States from 1977 to 1981 as the wife of President Jimmy Carter. For decades, she has been a leading advocate for numerou...Next Argentine presidential election - Next Argentine presidential election - presidential election in Argentina....Popular movies The Hunger Games (film) - 2012 American dystopian action thriller science fiction-adventure film directed by Gary Ross and based on Suzanne Collins’s 2008 novel of the same name. It is the first insta...untitled Captain Marvel sequel - part of Marvel Cinematic Universe....Killers of the Flower Moon (film project) - Killers of the Flower Moon - film project in United States of America. It was presented as drama, detective fiction, thriller. The film project starred Leonardo Dicaprio, Robert De Niro. Director of...Five Nights at Freddy's (film) - Five Nights at Freddy's - film published in 2017 in United States of America. Scenarist of the film - Scott Cawthon....Popular video games Minecraft - sandbox video game developed by Mojang Studios. Created by Markus "Notch" Persson in the Java programming language and released as a public alpha for personal computers in 2...Grand Theft Auto V - 2013 action-adventure game developed by Rockstar North and published by Rockstar Games. It is the first main entry in the Grand Theft Auto series since 2008's Grand Theft ...Roblox - online game platform and game creation system that allows users to program games and play games created by other users. Founded by David Baszucki and Erik Cassel in 2004 and released in...Baldur's Gate III - upcoming role-playing video game developed and published by Larian Studios for Microsoft Windows and the Stadia streaming service. It is the third main game in the Baldur's ...Alan Wake - action-adventure video game developed by Remedy Entertainment and published by Microsoft Studios, released for the Xbox 360 and Microsoft Windows. The story follows best-selling thri...Fortnite - online video game developed by Epic Games and released in 2017. It is available in three distinct game mode versions that otherwise share the same general gameplay and game engine: ...Super Mario RPG - is a role-playing video game developed by Square and published by Nintendo for the Super Nintendo Entertainment System in 1996. It was directed by Yoshihiko Maekawa and Chihiro Fujioka and produced by...Popular books Book of Revelation - The Book of Revelation is the final book of the New Testament, and consequently is also the final book of the Christian Bible. Its title is derived from the first word of the Koine Greek text: apok...Book of Genesis - account of the creation of the world, the early history of humanity, Israel's ancestors and the origins...Gospel of Matthew - The Gospel According to Matthew is the first book of the New Testament and one of the three synoptic gospels. It tells how Israel's Messiah, rejected and executed in Israel, pronounces judgement on ...Michelin Guide - Michelin Guides are a series of guide books published by the French tyre company Michelin for more than a century. The term normally refers to the annually published Michelin Red Guide , the oldest...Psalms - The Book of Psalms , commonly referred to simply as Psalms , the Psalter or "the Psalms", is the first book of the Ketuvim , the third section of the Hebrew Bible, and thus a book of th...Ecclesiastes - Ecclesiastes is one of 24 books of the Tanakh , where it is classified as one of the Ketuvim . Originally written c. 450–200 BCE, it is also among the canonical Wisdom literature of the Old Tes...The 48 Laws of Power - non-fiction book by American author Robert Greene. The book...Popular television series The Crown (TV series) - historical drama web television series about the reign of Queen Elizabeth II, created and principally written by Peter Morgan, and produced by Left Bank Pictures and Sony Pictures Tel...Friends - American sitcom television series, created by David Crane and Marta Kauffman, which aired on NBC from September 22, 1994, to May 6, 2004, lasting ten seasons. With an ensemble cast sta...Young Sheldon - spin-off prequel to The Big Bang Theory and begins with the character Sheldon...Modern Family - American television mockumentary family sitcom created by Christopher Lloyd and Steven Levitan for the American Broadcasting Company. It ran for eleven seasons, from September 23...Loki (TV series) - upcoming American web television miniseries created for Disney+ by Michael Waldron, based on the Marvel Comics character of the same name. It is set in the Marvel Cinematic Universe, shar...Game of Thrones - American fantasy drama television series created by David Benioff and D. B. Weiss for HBO. It...Shameless (American TV series) - American comedy-drama television series developed by John Wells which debuted on Showtime on January 9, 2011. It...
OWIKI.org . Text is available under the Creative Commons Attribution-ShareAlike License.