Timeline of glaciation
There have been five or six major ice ages in the history of Earth over the past 3 billion years.
The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.
Within ice ages, there exist periods of more severe glacial conditions and more temperate referred to as glacial periods and interglacial periods, respectively. The Earth is currently in such an interglacial period of the Quaternary glaciation, with the last glacial period of the Quaternary having ended approximately 11,700 years ago, the current interglacial being known as the Holocene epoch.
Based on climate proxies, paleoclimatologists study the different climate states originating from glaciation.
Known ice ages
Name of ice age | Years BP | Geological period | Era |
Pongola | 2900–2780 | Mesoarchean | |
Huron | 2400–2100 | Siderian Rhyacian | Paleoproterozoic |
Sturt Marino Gaskiers Baykonur | 715–680 650–635 580 547 | Cryogenian Ediacaran | Neoproterozoic |
Andean-Saharan | 450–420 | Late Ordovician Silurian | Paleozoic |
Karoo | 360–260 | Carboniferous Permian | Paleozoic |
Late Cenozoic Ice Age | 34–present | Late Paleogene Neogene Quaternary | Cenozoic |
Descriptions
The third ice age, and possibly most severe, is estimated to have occurred from 720 to 635 Ma ago, in the Neoproterozoic Era, and it has been suggested that it produced a second "Snowball Earth" i.e. a period during which Earth was completely covered in ice. It has been suggested also that the end of this second cold period was responsible for the subsequent Cambrian Explosion, a time of rapid diversification of multi-cellular life during the Cambrian Period. However, this hypothesis is still controversial, though is growing in popularity among researchers, as evidence in its favour has mounted.A minor series of occurred from 460 Ma to 430 Ma. There were extensive glaciations from 350 to 250 Ma.
The Late Cenozoic Ice Age has seen extensive ice sheets in Antarctica for the last 34 Ma. During the last 3 Ma ice sheets have also developed on the northern hemisphere. This phase is known as the Quaternary glaciation, and has seen more or less extensive glaciation. These first appeared with a dominant periodicity of 41,000 years, but after the Mid-Pleistocene Transition this changed to high-amplitude cycles with an average period of 100,000 years.
Nomenclature of Quaternary glacial cycles
Whereas the first 30 million years of the Late Cenozoic Ice Age mostly involved Antarctica, the Quaternary has seen numerous ice sheets extending over parts of Europe and North America that are currently populated and easily accessible. Early geologists therefore named apparent sequences of glacial and interglacial periods of the Quaternary Ice Age after characteristic geological features, and these names varied from region to region. It is now more common for researchers to refer to the periods by their marine isotopic stage number. The marine record preserves all the past glaciations; the land-based evidence is less complete because successive glaciations may wipe out evidence of their predecessors. Ice cores from continental ice accumulations also provide a complete record, but do not go as far back in time as marine data. Pollen data from lakes and bogs as well as loess profiles provided important land-based correlation data. The names system has mostly been phased out by professionals, who instead use the marine isotopic stage indexes for all technical discussions. For example, there are five Pleistocene glacial/interglacial cycles recorded in marine sediments during the last half million years, but only three classic interglacials were originally recognized on land during that period.Land-based evidence works acceptably well back as far as MIS 6, but it has been difficult to coordinate stages using just land-based evidence before that. Hence, the "names" system is incomplete and the land-based identifications of ice ages previous to that are somewhat conjectural. Nonetheless, land based data is essentially useful in discussing landforms, and correlating the known marine isotopic stage with them.
Historical nomenclature in the Alps
- Biber
- Biber-Danube interglacial
- Danube
- Danube-Gunz interglacial
- Günz
- Günz-Haslach interglacial
- Haslach
- Haslach-Mindel interglacial
- Mindel
- Mindel-Riss interglacial
- Riss
- Riss-Würm interglacial
- Würm
Historical nomenclature in Great Britain and Ireland
- Bramertonian Stage
- Baventian Stage/Pre-Pastonian
- Pastonian Stage
- Beestonian stage
- Cromerian Stage
- Anglian Stage
- Hoxnian Stage
- Wolstonian Stage
- Ipswichian interglacial
- Devensian glaciation
- Flandrian interglacial
Historical nomenclature in Northern Europe
- Pre-Tiglian
- Tiglian interglacial
- Eburonian
- Waalian interglacial
- Menapian glacial stage
- Cromerian complex
- Elster glaciation
- Holstein interglacial
- Saale glaciation
- Eem interglacial
- Weichsel glaciation
Historical nomenclature in North America
- Nebraskan glaciation
- Aftonian interglacial
- Kansan glaciation
- Yarmouthian
- Illinoian stage
- Sangamonian
- Wisconsin glaciation
Historical nomenclature in South America
- Caracoles glaciation
- Río Llico glaciation
- Santa María glaciation
- Valdivia interglacial
- Llanquihue glaciation
Uncertain correlations
Table explanation |
Extensive interglacial |
Moderate interglacial |
Intermediate climate |
Moderate glaciation |
Extensive glaciation |
AC = Ambiguous correlation |