The Open Solar Outdoors Test Field is a project organized under open source principles, which is a fully grid-connected test system that continuously monitors the output of many solar photovoltaic modules and correlates their performance to a long list of highly accurate meteorological readings.
History
As the solar photovoltaic industry grows, there is an increased demand for high-quality research in solar systems design and optimization in realistic outdoor environments such as in Canada. To answer this need, a partnership has formed the Open Solar Outdoors Test Field. The OSOTF was originally developed with a strong partnership between the Queen's Applied Sustainability Research Group run by Joshua M. Pearce at Queen's University and the at St. Lawrence College headed by Adegboyega Babasola. This collaboration has grown rapidly to include multiple industry partners and the OSOTF has been redesigned to provide critical data and research for the team. The OSOTF is a fully grid-connected test system, which continuously monitors the output of over 100 photovoltaic modules and correlates their performance to a long list of highly accurate meteorological readings. The teamwork has resulted in one of the largest systems in the world for this detailed level of analysis, and can provide valuable information on the actual performance of photovoltaic modules in real-world conditions. Unlike many other projects, the OSOTF is organized under open source principles. All data and analysis when completed will be made freely available to the entire photovoltaic community and the general public. The first project for the OSOTF quantifies the losses due to snowfall of a solar photovoltaic system, generalizes these losses to any location with weather data and recommends best practices for system design in snowy climates. This work was accomplished by creating a synthetic day using empirical data from the OSOTF. This application of the OSOTF has been covered extensively in the media.
Partners
This system has been made possible by the and contributions and collaborations from:
The development of this test facility is a testament to the commitment of the photovoltaic industry to continuous innovation, and the researchers hope that it will be a valuable tool for ensuring the development of a sustainable power system worldwide.
Open Solar Outdoors Test Field
The SEARC Open Solar Outdoors Test Field consists of two discreet test beds, the largest of which is located on the roof of the new Wind Turbine and Trades building at St.Lawrence College and which has room for 60 commercial PV panels, which are divided between eight angles of 5.10,15,20,30,40,50 and 60 degrees. Live video for the test field is openly available . Full data access available . The second test field is located on a flat rooftop at St.Lawrence College and consists of two commercial flat roof ballasted systems. Live video of this test field is also available In addition the Queen's Innovation Park Test Site which was developed as part of a preliminary study on the effects of snow on photovoltaic performance funded by . It consists of 16 panels mounted at angles from 0 to 70 degrees, with two each at increments of 10 degrees. By monitoring panel output, solar influx, snow fall and meteorological factors a loss due to snowfall can be determined for a general system at a variety of angles. In addition, thermal panel measurements lead to a better understanding of snow shedding mechanisms. A series of analysis algorithms have been developed which allow for constant data mining to determine factors such as snow coverage ratio using image analysis, performance ratio, and estimated losses/gains due to snowfall. A detailed description of the sensors and measurements used in the study can be seen below.
Specifications
The Open Solar Outdoors Test Field is designed to be a state-of-the-art outdoors test facility which makes this site one of the premier PV test beds in North America. The capabilities of this test bed are shown in the following table.