The Mechanical Universe
The Mechanical Universe...And Beyond is a 52-part telecourse, filmed at the California Institute of Technology, that introduces university level physics, covering topics from Copernicus to quantum mechanics. The 1985-86 series was produced by Caltech and INTELECOM, a nonprofit consortium of California community colleges now known as Intelecom Learning, with financial support from Annenberg/CPB.
Overview
Produced starting in 1982, the videos make heavy use of historical dramatizations and visual aids to explain physics concepts. The latter were state of the art at the time, incorporating almost eight hours of computer animation created by computer graphics pioneer Jim Blinn. Each episode opens and closes with bookend segments in which Caltech professor David Goodstein, speaking in a lecture hall, delivers explanations "that can't quite be put into the mouth of our affable, faceless narrator". After more than a quarter century, the series is still often used as a supplemental teaching aid, for its clear explanation of fundamental concepts such as special relativity.The bookend segments featuring Goodstein were specially staged versions of actual freshman physics lectures from Caltech's courses Physics 1a and 1b. The organization and the choice of topics to emphasize in the television show reflect a then-recent revision of Caltech's introductory physics curriculum, the first total overhaul since the one represented by The Feynman Lectures on Physics almost two decades earlier. While Feynman generally sought contemporary examples of topics, the later revision of the curriculum brought a more historical focus:
In essence, the earlier Feynman course had sought to make physics exciting by relating each subject, wherever possible, to contemporary scientific problems. The new course took the opposite tack, of trying to recreate the historical excitement of the original discovery. For example, classical mechanics—a notoriously difficult and uninspiring subject for students—is treated as the discovery of "our place in the universe". Accordingly, celestial mechanics is the backbone of the subject and its climax is Newton's solution of the Kepler problem.
Production details
The room seen in the bookend segments is the Bridge lecture hall at Caltech. Many of the extras were students from other schools, and the front rows of the lecture hall were deliberately filled with more women than would have typically been seen at Caltech lectures. The TV production team added fake wood paneling to the lecture hall so that it would more closely resemble that seen in the show The Paper Chase. Later, the Caltech physics department was sufficiently impressed by the result that panels were installed permanently. Many seats in the lecture hall had to be removed in order to make room for the camera track and studio lights. To cover this, additional reaction shots of a full lecture hall were filmed later, so that the illusion of a complete audience could be created in editing. For most of the footage of Goodstein himself, only two rows of students were present.Many other video segments were shot on location, for example at a Linde industrial plant that produced liquid air. Historical scenes were often made to be generic, in order to facilitate their reuse across multiple episodes: "Young Newton strolls through an apple orchard, old Newton testily refuses a cup of tea from a servant, and so on". Footage featuring historical reenactment of Johannes Kepler was purchased from Carl Sagan's 1980 television series .
The series was originally planned to consist of 26 episodes. This was later expanded to 60 episodes, a number then cut back to the eventual total of 52 for budget and production-schedule reasons.
The show was intended not to require previous experience with calculus. Instead, the basics of differential and integral calculus would both be taught early in the series itself. Caltech mathematician Tom M. Apostol joined the Mechanical Universe production staff in order to ensure that the series did not compromise on the quality of the mathematics it presented. Seeing an example of Blinn's computer animation for the first time convinced Apostol that the series could bring mathematics "to life in a way that cannot be done in a textbook or at the chalkboard". When test screenings to humanities students revealed that their greatest difficulty learning calculus was a weak background in trigonometry, Apostol wrote a primer on the subject to be distributed with the telecourse. After advising the production of The Mechanical Universe, Apostol decided that a similar series, geared to high-school mathematics, would be beneficial. This became the later Caltech series Project Mathematics!, which also featured computer animation by Blinn. Some of Blinn's animations for The Mechanical Universe were reused in the new series, in order to illustrate applications of algebra, geometry, and trigonometry.
The 1990 science-fiction action movie Total Recall used portions of the Mechanical Universe title sequence, in a scene where the protagonist is offered virtual vacations in locales around the Solar System. The animation was used without licensing, and consequently, Caltech and Intelecom sued Carolco Pictures for $3 million.
In order to present detailed mathematical equation derivations, the show employed a technique its creators called the "algebraic ballet". Computer animation presented derivations in step-by-step detail, but rapidly and with touches of whimsy, such as algebraic terms being canceled by a Monty Python-esque stomping foot or the hand of God from Michelangelo's The Creation of Adam. Blinn felt that Cosmos had taken itself "too seriously", and so he aimed to include more humor in the Mechanical Universe animations. The goal was to avoid putting the viewers' "brains into a 60-cycle hum", without sacrificing rigor; the creators intended that students could learn the overall gist of each derivation from the animation, and then study the details using the accompanying textbook. Computer animation was also used to portray idealizations of physical systems, like simulated billiard balls illustrating Newton's laws of motion. One commenter deemed these animations "particularly useful in providing students with subjective insights into dynamic three-dimensional phenomena such as magnetic fields".
Creating the computer graphics necessary to visualize physics concepts led Blinn to invent new techniques for simulating clouds, as well as the virtual "blobby objects" known as metaballs. Blinn used the vertex coordinates of regular icosahedra and dodecahedra to determine the placement of electric field lines radiating away from point charges.
Most of the narration was voiced by actor Aaron Fletcher, who also played Galileo Galilei in the historical segments. Some portions, such as explanations of particular technical details, were narrated by Sally Beaty, the show's executive producer.
Shorter versions of Mechanical Universe episodes, 10 to 20 minutes in length, were created for use in high schools. This adaptation, for which a dozen high-school teachers and administrators were consultants, was supported by a $650,000 grant from the National Science Foundation. These videos were distributed alongside supplemental written material for teachers' benefit, and were intended to be employed in conjunction with existing textbooks. Yorkshire Television later produced a version repackaged for the United Kingdom audience, which was released in April 1991.
Funding
provided the funding for the production of The Mechanical Universe. The show was one of the first twelve projects funded by the initial $90 million pledge the Annenberg Foundation gave to the Corporation for Public Broadcasting in the early 1980s. The total cost of the project was roughly $10 million.Critical reception
Initial responses
PBS and The Learning Channel began broadcasting The Mechanical Universe in September 1985. During the fall of 1986, roughly 100 PBS stations carried The Mechanical Universe, and by the fall of 1987, over 600 higher-education institutions had purchased it or licensed the episodes for use. In 1992, Goodstein noted that the series had been broadcast, via PBS, by over 100 stations, "usually at peculiar hours when innocent people were unlikely to tune in accidentally on a differential equation in the act of being solved". He observed that detailed viewership figures were difficult to obtain, but when the show had been broadcast in Miami during Saturday mornings, the producers were able to obtain Nielsen ratings.In fact, it came in second in its time slot, beating the kiddie cartoons on two network stations. There were 18,000 faithful core households in Dade County alone, the median age of the viewers was 18, and half were female. However, we seldom get that kind of detailed information.Goodstein and assistant project director Richard Olenick noted,
Anecdotal information in the form of letters and phone calls indicates very considerable enthusiasm among users at all levels from casual viewers to high-school students to research university professors, but there have also been a number of sharp disappointments, particularly when Instructional Television administrators have tried to handle TMU like a conventional telecourse.Similarly, a 1988 review in Physics Today suggested that the programs would not function well on their own as a telecourse, but would work much better as a supplement to a traditional classroom or a more standard distance-learning course such as Open University. The reviewers also found the "algebraic ballet" of computer-animated equations too fast to follow: "After a short time, one yearns for a live professor filling the blackboard with equations". Similarly, a review in the American Journal of Physics, while praising the "technical proficiency of the films", wrote of the animated equation manipulations, "As the MIT students say, this is like trying to take a drink of water out of a fire hose". A considerably more enthusiastic evaluation came from physicist Charles H. Holbrow, who told Olenick, "These materials will constitute the principal visual image of physics for decades". Goodstein and Olenick reported that younger viewers tended to enjoy the "algebraic ballet" style "much more than older viewers, who are made uncomfortable by the algebraic manipulations they cannot quite follow".
Classroom use
In 1986, The Mechanical Universe was used as part of a summer program for gifted children, to overall success.A 1987 study at Indiana University Bloomington used 14 Mechanical Universe episodes as part of an introductory course on Newtonian mechanics, with generally positive results:
hese tapes were particularly effective in placing Newtonian mechanics in a historical perspective; dramatizing the historical overthrow of Aristotelian and medieval ideas; illustrating the diverse nature of scientists and the scientific endeavor; stimulating student interest and enthusiasm; and, through excellent animation, illustrating the time dimension of certain mechanics concepts. The companion text was placed on library reserve for the course but was not extensively utilized by students.A follow-up study found that the videos could also be helpful explaining physics to professors in other fields. Negative reactions generally had less to do with the intrinsic perceived quality of the episodes than with the time the science-history material took away from content seen as "critical exam-preparing instruction". The investigator recalled,
ome students, thinking that the videotape material would not be covered on the tests, headed for the doors when the lights dimmed! To counter this tendency I started to use a few test questions based on historical or literary details discussed in the videotapes. Some students were outraged: "What is this, a poetry class?"
Classroom use continued into the 1990s. A minority education program at the University of California, Berkeley employed Mechanical Universe episode segments as part of group discussions. In a 1993 review of the series, a science historian stated that he had used episodes in his classes for several years, naming "Kepler's Three Laws" and "The Michelson–Morley Experiment" as his personal favorites.
The highlight of the Kepler film is a segment in which we are shown an exquisite graphical realization of the way in which Kepler actually figured out that the orbits of the planets are elliptical rather than circular. The sheer difficulty of the problem he faced and the elegance of the method he applied to solve it are abundantly clear. I cannot imagine a better way to present this magnificent discovery, which can easily appear so trivial.A 2005 column in The Physics Teacher suggested The Mechanical Universe as preparatory viewing for instructors attempting to teach physics for the first time. The Physics Teacher has also recommended the series "as enrichment or a makeup assignment for high-ability students". Writing for Wired magazine's web site, Rhett Allain cited the series as an example of videos that could replace some functions of traditional lectures.
Awards
In 1987, "The Lorentz Transformation" was awarded the sixteenth annual Japan Prize for educational television. Other awards received by The Mechanical Universe include the 1986 Gold Award from the Birmingham International Film Festival, two "Cindy" awards from the International Association of Audio Visual Communicators, a Gold Award and a Silver Award from the International Film and TV Festival of New York, Silver and Gold Apple awards from the National Educational Film and Video Festival, and a Gold Plaque from the Chicago International Film Festival.Goodstein received the 1999 Oersted Medal for his work in physics education, including The Mechanical Universe. For his contributions to the field of computer graphics, including his animations for Cosmos, The Mechanical Universe and Project Mathematics!, Blinn received a MacArthur fellowship in 1991, as well as the 1999 Steven A. Coons Award.
Portrayal of Tacoma Narrows Bridge collapse
Like many introductory physics texts, The Mechanical Universe cites the spectacular 1940 collapse of the Tacoma Narrows Bridge as an example of resonance, using footage of the disaster in the "Resonance" episode. However, as more-recent expositions have emphasized, the catastrophic oscillations that destroyed the bridge were not due to simple mechanical resonance, but to a more complicated interaction between the bridge and the winds passing through it—a phenomenon known as aeroelastic flutter. This phenomenon is a kind of "self-sustaining vibration" that lies beyond the regime of applicability of the linear theory of the externally-driven simple harmonic oscillator.List of episodes
The opening sequence used for the first 26 episodes lists the show's title as The Mechanical Universe, whereas the latter 26 episodes are titled The Mechanical Universe...and Beyond. The reason for the addition is explained by Goodstein in the closing lecture segment of the final episode:In the first scientific revolution, disputation over the interpretation of human or divine authority was replaced by observation, by measurement, by the testing of hypotheses, all of it with the powerful help of quantitative mathematical reasoning. And the result of all that was the mechanical universe, a universe that inexorably worked out its destiny according to precise, predictable, mechanical laws. Today, we no longer believe in that universe. If I know the precise position of some particle at some instant of time, I cannot have any idea of where it's going or how fast. And it doesn't make any difference at all if you say, "All right, you don't know where it's going, but where is it really going?" That is precisely the kind of question that is scientifically meaningless. That is the nature of the world we live in. That is the quantum mechanical universe.The series can be purchased from Caltech or streamed from online video sources, including Caltech's official YouTube channel. Caltech also posted on YouTube a series of short videos made by Blinn to demonstrate the show's computer animation at SIGGRAPH conferences.
''The Mechanical Universe''
''The Mechanical Universe ...and Beyond''
Episode number | Title | Directed by | Written by | Episode via YouTube |
Companion textbooks
- R.P. Olenick, T.M. Apostol, and D.L. Goodstein. The Mechanical Universe: Introduction to Mechanics and Heat.
- R.P. Olenick, T.M. Apostol, and D.L. Goodstein. Beyond the Mechanical Universe: From Electricity to Modern Physics.