A ternary plot, ternary graph, triangle plot, simplex plot, Gibbs triangle or de Finetti diagram is a barycentric plot on three variables which sum to a constant. It graphically depicts the ratios of the three variables as positions in an equilateral triangle. It is used in physical chemistry, petrology, mineralogy, metallurgy, and other physical sciences to show the compositions of systems composed of three species. In population genetics, it is often called a de Finetti diagram. In game theory, it is often called a simplex plot. Ternary plots are tools for analyzingcompositional data in the three-dimensional case. In a ternary plot, the values of the three variables,, and must sum to some constant,. Usually, this constant is represented as 1.0 or 100%. Because for all substances being graphed, any one variable is not independent of the others, so only two variables must be known to find a sample's point on the graph: for instance, must be equal to. Because the three numerical values cannot vary independently—there are only two degrees of freedom—it is possible to graph the combinations of all three variables in only two dimensions.
Reading values on the ternary plot
The advantage of using a ternary plot for depicting chemical compositions is that three variables can be conveniently plotted in a two-dimensional graph. Ternary plots can also be used to create phase diagrams by outlining the composition regions on the plot where different phases exist. Every point on a ternary plot represents a different composition of the three components. A parallel to a side of the triangle is the locus of points representing systems with constant chemical composition in the component situated in the vertex opposed to the side. There are three common methods used to determine the ratios of the three species in the composition. The first method is an estimation based upon the phase diagram grid. The concentration of each species is 100% in each corner of the triangle and 0% at the line opposite it. The percentage of a specific species decreases linearly with increasing distance from this corner, as seen in figures 3–8. By drawing parallel lines at regular intervals between the zero line and the corner, fine divisions can be established for easy estimation of the content of a species. For a given point, the fraction of each of the three materials in the composition can be determined by the first. For phase diagrams that do not possess grid lines, the easiest way to determine the composition is to set the altitude of the triangle to 100% and determine the shortest distances from the point of interest to each of the three sides. By Viviani's theorem, the distances give the content of each of the species, as shown in figure 1. The third method is based upon a larger number of measurements, but does not require the drawing of perpendicular lines. Straight lines are drawn from each corner, through the point of interest, to the opposite side of the triangle. The lengths of these lines, as well as the lengths of the segments between the point and the corresponding sides, are measured individually. Ratios can then be determined by dividing these segments by the entire corresponding line as shown in the figure 2..
Figure shows an oblique projection of point in a 3-dimensional Cartesian space with axes, and, respectively. If , is restricted to a plane containing, and. If, and each cannot be negative, is restricted to the triangle bounded by, and, as in. In, the axes are rotated to give an isometric view. The triangle, viewed face-on, appears equilateral. In, the distances of from lines, and are denoted by, and, respectively. For any line invector form and a point, the perpendicular distance from to is In this case, point is at Line has Using the perpendicular distance formula, Substituting, Similar calculation on lines and gives This shows that the distance of the point from the respective lines is linearly proportional to the original values, and.
Plotting a ternary plot
are useful for plotting points in the triangle. Consider an equilateral ternary plot where is placed at and at. Then is, and the triple is
Example
This example shows how this works for a hypothetical set of three soil samples: