T-norm
In mathematics, a t-norm is a kind of binary operation used in the framework of probabilistic metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the framework of probabilistic metric spaces t-norms are used to generalize triangle inequality of ordinary metric spaces.
Definition
A t-norm is a function T: × → which satisfies the following properties:- Commutativity: T = T
- Monotonicity: T ≤ T if a ≤ c and b ≤ d
- Associativity: T = T
- The number 1 acts as identity element: T = a
The defining conditions of the t-norm are exactly those of the partially ordered Abelian monoid on the real unit interval . The monoidal operation of any partially ordered Abelian monoid L is therefore by some authors called a triangular norm on L.
Motivations and applications
T-norms are a generalization of the usual two-valued logical conjunction, studied by classical logic, for fuzzy logics. Indeed, the classical Boolean conjunction is both commutative and associative. The monotonicity property ensures that the degree of truth of conjunction does not decrease if the truth values of conjuncts increase. The requirement that 1 be an identity element corresponds to the interpretation of 1 as true. Continuity, which is often required from fuzzy conjunction as well, expresses the idea that, roughly speaking, very small changes in truth values of conjuncts should not macroscopically affect the truth value of their conjunction.T-norms are also used to construct the intersection of fuzzy sets or as a basis for aggregation operators. In probabilistic metric spaces, t-norms are used to generalize triangle inequality of ordinary metric spaces. Individual t-norms may of course frequently occur in further disciplines of mathematics, since the class contains many familiar functions.
Classification of t-norms
A t-norm is called continuous if it is continuous as a function, in the usual interval topology on 2.A t-norm is called strict if it is continuous and strictly monotone.
A t-norm is called nilpotent if it is continuous and each x in the open interval is its nilpotent element, i.e., there is a natural number n such that x ... x equals 0.
A t-norm is called Archimedean if it has the Archimedean property, i.e., if for each x, y in the open interval there is a natural number n such that x ... x is less than or equal to y.
The usual partial ordering of t-norms is pointwise, i.e.,
As functions, pointwise larger t-norms are sometimes called stronger than those pointwise smaller. In the semantics of fuzzy logic, however, the larger a t-norm, the weaker conjunction it represents.
Prominent examples
- Minimum t-norm also called the Gödel t-norm, as it is the standard semantics for conjunction in Gödel fuzzy logic. Besides that, it occurs in most t-norm based fuzzy logics as the standard semantics for weak conjunction. It is the pointwise largest t-norm.
- Product t-norm . Besides other uses, the product t-norm is the standard semantics for strong conjunction in product fuzzy logic. It is a strict Archimedean t-norm.
- Łukasiewicz t-norm The name comes from the fact that the t-norm is the standard semantics for strong conjunction in Łukasiewicz fuzzy logic. It is a nilpotent Archimedean t-norm, pointwise smaller than the product t-norm.
- Drastic t-norm
- Nilpotent minimum
- Hamacher product
Properties of t-norms
For every t-norm T, the number 0 acts as null element: T = 0 for all a in .
A t-norm T has zero divisors if and only if it has nilpotent elements; each nilpotent element of T is also a zero divisor of T. The set of all nilpotent elements is an interval or .
Properties of continuous t-norms
Although real functions of two variables can be continuous in each variable without being continuous on 2, this is not the case with t-norms: a t-norm T is continuous if and only if it is continuous in one variable, i.e., if and only if the functions fy = T are continuous for each y in . Analogous theorems hold for left- and right-continuity of a t-norm.A continuous t-norm is Archimedean if and only if 0 and 1 are its only idempotents.
A continuous Archimedean t-norm is strict if 0 is its only nilpotent element; otherwise it is nilpotent. By definition, moreover, a continuous Archimedean t-norm T is nilpotent if and only if each x < 1 is a nilpotent element of T. Thus with a continuous Archimedean t-norm T, either all or none of the elements of are nilpotent. If it is the case that all elements in are nilpotent, then the t-norm is isomorphic to the Łukasiewicz t-norm; i.e., there is a strictly increasing function f such that
If on the other hand it is the case that there are no nilpotent elements of T, the t-norm is isomorphic to the product t-norm. In other words, all nilpotent t-norms are isomorphic, the Łukasiewicz t-norm being their prototypical representative; and all strict t-norms are isomorphic, with the product t-norm as their prototypical example. The Łukasiewicz t-norm is itself isomorphic to the product t-norm undercut at 0.25, i.e., to the function p = max on 2.
For each continuous t-norm, the set of its idempotents is a closed subset of . Its complement — the set of all elements which are not idempotent — is therefore a union of countably many non-overlapping open intervals. The restriction of the t-norm to any of these intervals is Archimedean, and thus isomorphic either to the Łukasiewicz t-norm or the product t-norm. For such x, y that do not fall into the same open interval of non-idempotents, the t-norm evaluates to the minimum of x and y. These conditions actually give a characterization of continuous t-norms, called the Mostert–Shields theorem, since every continuous t-norm can in this way be decomposed, and the described construction always yields a continuous t-norm. The theorem can also be formulated as follows:
A similar characterization theorem for non-continuous t-norms is not known, only some non-exhaustive methods for the construction of t-norms have been found.
Residuum
For any left-continuous t-norm, there is a unique binary operation on such thatfor all x, y, z in . This operation is called the residuum of the t-norm. In prefix notation, the residuum to a t-norm is often denoted by or by the letter R.
The interval equipped with a t-norm and its residuum forms a residuated lattice. The relation between a t-norm T and its residuum R is an instance of adjunction : the residuum forms a right adjoint R to the functor T for each x in the lattice taken as a poset category.
In the standard semantics of t-norm based fuzzy logics, where conjunction is interpreted by a t-norm, the residuum plays the role of implication.
Basic properties of residua
If is the residuum of a left-continuous t-norm, thenConsequently, for all x, y in the unit interval,
and
If is a left-continuous t-norm and its residuum, then
If is continuous, then equality holds in the former.
Residua of prominent left-continuous t-norms
If x ≤ y, then R = 1 for any residuum R. The following table therefore gives the values of prominent residua only for x > y.Residuum of the | Name | Value for x > y | Graph |
Minimum t-norm | Standard Gōdel implication | y | |
Product t-norm | Goguen implication | y / x | |
Łukasiewicz t-norm | Standard Łukasiewicz implication | 1 – x + y | |
Nilpotent minimum | max |
T-conorms
T-conorms are dual to t-norms under the order-reversing operation which assigns 1 – x to x on . Given a t-norm, the complementary conorm is defined byThis generalizes De Morgan's laws.
It follows that a t-conorm satisfies the following conditions, which can be used for an equivalent axiomatic definition of t-conorms independently of t-norms:
- Commutativity: ⊥ = ⊥
- Monotonicity: ⊥ ≤ ⊥ if a ≤ c and b ≤ d
- Associativity: ⊥ = ⊥
- Identity element: ⊥ = a
Examples of t-conorms
Important t-conorms are those dual to prominent t-norms:- Maximum t-conorm, dual to the minimum t-norm, is the smallest t-conorm. It is the standard semantics for disjunction in Gödel fuzzy logic and for weak disjunction in all t-norm based fuzzy logics.
- Probabilistic sum is dual to the product t-norm. In probability theory it expresses the probability of the union of independent events. It is also the standard semantics for strong disjunction in such extensions of product fuzzy logic in which it is definable.
- Bounded sum is dual to the Łukasiewicz t-norm. It is the standard semantics for strong disjunction in Łukasiewicz fuzzy logic.
- Drastic t-conorm
- Nilpotent maximum, dual to the nilpotent minimum:
- Einstein sum
Properties of t-conorms
- For any t-conorm ⊥, the number 1 is an annihilating element: ⊥ = 1, for any a in .
- Dually to t-norms, all t-conorms are bounded by the maximum and the drastic t-conorm:
- A t-norm T distributes over a t-conorm ⊥, i.e.,
Non-standard negators
A negator n is called
- strict in case of strict monotonocity
- strong if it is strict and involutive : Universal quantification#notation|.
,
which is both strict and strong. As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows:
A De Morgan Triplet is a triple iff
- T is a t-norm
- ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above
- n is a strong negator
- .