Supercritical water reactor


The supercritical water reactor is a concept Generation IV reactor, mostly designed as light water reactor that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and must not be confused with the concept of criticality of the nuclear reactor.
The water heated in the reactor core becomes a supercritical fluid above the critical temperature of 374 °C, transitioning from a fluid more resembling liquid water to a fluid more resembling saturated steam, without going through the distinct phase transition of boiling.
In contrast, the well-established pressurized water reactors have a primary cooling loop of liquid water at a subcritical pressure, transporting heat from the reactor core to a secondary cooling loop, where the steam for driving the turbines is produced in a boiler.
Boiling water reactors operate at even lower pressures, with the boiling process to generate the steam happening in the reactor core.
The supercritical steam generator is a proven technology.
The development of SCWR systems is considered a promising advancement for nuclear power plants because of its high thermal efficiency and simpler design. As of 2012 the concept was being investigated by 32 organizations in 13 countries.

History

The super-heated steam cooled reactors operating at subcritical-pressure were experimented with in both Soviet Union and in the United States as early as the 1950s and 1960s such as Beloyarsk Nuclear Power Station, Pathfinder and Bonus of GE's Operation Sunrise program. These are not SCWRs. SCWRs were developed from the 1990s onwards.
Both a LWR-type SCWR with a reactor pressure vessel and a CANDU-type SCWR with pressure tubes are being developed.
A 2010 book includes conceptual design and analysis methods such as core design, plant system, plant dynamics and control, plant startup and stability, safety, fast reactor design etc.
A 2013 document saw the completion of a prototypical fueled loop test in 2015. A Fuel Qualification Test was completed in 2014.
A 2014 book saw reactor conceptual design of a thermal spectrum reactor and a fast reactor and experimental results of thermal hydraulics, materials and material-coolant interactions.

Design

Moderator-coolant

The SCWR operates at supercritical pressure. The reactor outlet coolant is supercritical water. Light water is used as a neutron moderator and coolant. Above the critical point, steam and liquid become the same density and are indistinguishable, eliminating the need for pressurizers and steam generators, or jet/recirculation pumps, steam separators and dryers. Also by avoiding boiling, SCWR does not generate chaotic voids with less density and moderating effect. In a LWR this can affect heat transfer and water flow, and the feedback can make the reactor power harder to predict and control. Neutronic and thermal hydraulic coupled calculation is needed to predict the power distribution. SCWR's simplification should reduce construction costs and improve reliability and safety.
A LWR type SCWR adopts water rods with thermal insulation and A CANDU type SCWR keeps water moderator in a Calandria tank. A fast reactor core of the LWR type SCWR adopts tight fuel rod lattice as a high conversion LWR. The fast neutron spectrum SCWR has advantages of a higher power density, but needs plutonium and uranium mixed oxides fuel which will be available from reprocessing.

Control

SCWRs would likely have control rods inserted through the top, as is done in PWRs.

Material

The conditions inside an SCWR are harsher than those in LWRs, LMFBRs, and supercritical fossil fuel plants. SCWRs need a higher standard of core materials than either of these. R&D focuses on:
However, Safety analysis of LWR type SCWR showed that safety criteria are met at accidents and abnormal transients including total loss of flow and loss of coolant accident. No double ended break occurs because of the once-through coolant cycle. Core is cooled by the induced flow at the loss of coolant accident.
The coolant greatly reduces its density at the end of the core, resulting in a need to place extra moderator there. A LWR type SCWR design adopts water rods in the fuel assemblies. Most designs of CANDU type SCWR use an internal calandria where part of the feedwater flow is guided through top tubes through the core, that provide the added moderation in that region. This has the added advantage of being able to cool the entire vessel wall with feedwater, but results in a complex and materially demanding internal calandria and plena arrangement. Again a pressure-tube design has potentially fewer issues, as most of the moderator is in the calandria at low temperature and pressure, reducing the coolant density effect on moderation, and the actual pressure tube can be kept cool by the calandria water.