Spider silk


Spider silk is a protein fibre spun by spiders. Spiders use their silk to make webs or other structures, which function as sticky nets to catch other animals, or as nests or cocoons to protect their offspring, or to wrap up prey. They can also use their silk to suspend themselves, to float through the air, or to glide away from predators. Most spiders vary the thickness and stickiness of their silk for different uses.
In some cases, spiders may even use silk as a source of food. While methods have been developed to collect silk from a spider by force, it is difficult to gather silk from many spiders compared to silk-spinning organisms such as silkworms.

Biodiversity

Uses

All spiders produce silks, and a single spider can produce up to seven different types of silk for different uses. This is in contrast to insect silks, where an individual usually only produces one type of silk. Spider silks may be used in many different ecological ways, each with properties to match the silk's function. As spiders have evolved, so has their silks' complexity and diverse uses, for example from primitive tube webs 300–400 million years ago to complex orb webs 110 million years ago.
UseExampleReference
Prey captureThe orb webs produced by the Araneidae ; tube webs; tangle webs; sheet webs; lace webs, dome webs; single thread used by the Bolas spiders for "fishing".
Prey immobilisationSilk used as "swathing bands" to wrap up prey. Often combined with immobilising prey using a venom. In species of Scytodes the silk is combined with venom and squirted from the chelicerae.
ReproductionMale spiders may produce sperm webs; spider eggs are covered in silk cocoons.
Dispersal"Ballooning" or "kiting" used by smaller spiders to float through the air, for instance for dispersal.
Source of foodThe kleptoparasitic Argyrodes eating the silk of host spider webs. Some daily weavers of temporary webs also eat their own unused silk daily, thus mitigating a heavy metabolic expense.
Nest lining and nest constructionTube webs used by "primitive" spiders such as the European tube web spider. Threads radiate out of nest to provide a sensory link to the outside. Silk is a component of the lids of spiders that use "trapdoors", such as members of the family Ctenizidae, and the "water" or "diving bell" spider Argyroneta aquatica builds its diving bell of silk.
Guide linesSome spiders that venture from shelter will leave a trail of silk by which to find their way home again.
Drop lines and anchor linesMany spiders, such as the Salticidae, that venture from shelter and leave a trail of silk, use that as an emergency line in case of falling from inverted or vertical surfaces. Many others, even web dwellers, will deliberately drop from a web when alarmed, using a silken thread as a drop line by which they can return in due course. Some, such as species of Paramystaria, also will hang from a drop line when feeding.
Alarm linesSome spiders that do not spin actual trap webs do lay out alarm webs that the feet of their prey can disturb, cueing the spider to rush out and secure the meal if it is small enough, or to avoid contact if the intruder seems too formidable.
Pheromonal trailsSome wandering spiders will leave a largely continuous trail of silk impregnated with pheromones that the opposite sex can follow to find a mate.

Types

Meeting the specification for all these ecological uses requires different types of silk suited to different broad properties, as either a fibre, a structure of fibres, or a silk-globule. These types include glues and fibres. Some types of fibres are used for structural support, others for constructing protective structures. Some can absorb energy effectively, whereas others transmit vibration efficiently. In a spider, these silk types are produced in different glands; so the silk from a particular gland can be linked to its use by the spider.
GlandSilk Use
Ampullate Dragline silk—used for the web's outer rim and spokes, also for the lifeline and for ballooning.
Ampullate Used for temporary scaffolding during web construction.
FlagelliformCapture-spiral silk—used for the capturing lines of the web.
TubuliformEgg cocoon silk—used for protective egg sacs.
AciniformUsed to wrap and secure freshly captured prey; used in the male sperm webs; used in stabilimenta.
AggregateA silk glue of sticky globules.
PiriformUsed to form bonds between separate threads for attachment points.

Properties

Mechanical properties

Each spider and each type of silk has a set of mechanical properties optimised for their biological function.
Most silks, in particular dragline silk, have exceptional mechanical properties. They exhibit a unique combination of high tensile strength and extensibility. This enables a silk fibre to absorb a large amount of energy before breaking.
A frequent mistake made in the mainstream media is to confuse strength and toughness, when comparing silk to other materials. Weight for weight, silk is stronger than steel, but not as strong as Kevlar. Silk is, however, tougher than both.
The variability of mechanical properties of spider silk fibres may be important and it is related to their degree of molecular alignment. Mechanical properties depend strongly on the ambient conditions, i.e. humidity and temperature.

Strength

A dragline silk's tensile strength is comparable to that of high-grade alloy steel, and about half as strong as aramid filaments, such as Twaron or Kevlar.

Density

Consisting of mainly protein, silks are about a sixth of the density of steel. As a result, a strand long enough to circle the Earth would weigh less than.
Energy density
The energy density of dragline spider silk is roughly.

Extensibility

Silks are also extremely ductile, with some able to stretch up to five times their relaxed length without breaking.

Toughness

The combination of strength and ductility gives dragline silks a very high toughness, which "equals that of commercial polyaramid filaments, which themselves are benchmarks of modern polymer fibre technology".

Temperature

While unlikely to be relevant in nature, dragline silks can hold their strength below −40 °C and up to 220 °C. As occurs in many materials, spider silk fibres undergo a glass transition. The glass-transition temperature depends on the humidity, as water is a plasticiser for the silk.

Supercontraction

When exposed to water, dragline silks undergo supercontraction, shrinking up to 50% in length and behaving like a weak rubber under tension. Many hypotheses have been suggested as to its use in nature, with the most popular being to automatically tension webs built in the night using the morning dew.

Highest-performance

The toughest known spider silk is produced by the species Darwin's bark spider : "The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice as tough as any previously described silk, and over 10 times tougher than Kevlar".

Adhesive properties

Silk fibre is a two-compound secretion, spun into patterns that are employed to adhere silk threads to various surfaces using a minimum of silk substrate. The pyriform threads polymerise under ambient conditions, become functional immediately, and are usable indefinitely, remaining biodegradable, versatile and compatible with numerous other materials in the environment. The adhesive and durability properties of the attachment disc are controlled by functions within the spinnerets. Some adhesive properties of the silk resemble glue, consisting of microfibrils and lipid enclosures.

Types of silk

Many species of spiders have different glands to produce silk with different properties for different purposes, including housing, web construction, defence, capturing and detaining prey, egg protection, and mobility. Different specialised silks have evolved with properties suitable for different uses. For example, Argiope argentata has five different types of silk, each used for a different purpose:
SilkUse
major-ampullate silkUsed for the web's outer rim and spokes and also for the lifeline. Can be as strong per unit weight as steel, but much tougher.
capture-spiral silkUsed for the capturing lines of the web. Sticky, extremely stretchy and tough. The capture spiral is sticky due to droplets of aggregate that is placed on the spiral. The elasticity of flagelliform allows for enough time for the aggregate to adhere to the aerial prey flying into the web.
tubiliform silkUsed for protective egg sacs. Stiffest silk.
aciniform silkUsed to wrap and secure freshly captured prey. Two to three times as tough as the other silks, including dragline.
minor-ampullate silkUsed for temporary scaffolding during web construction.
Piriform Piriform serves as the attachment disk to dragline silk. Piriform is used in attaching spider silks together to construct a stable web.

Structural

Macroscopic structure down to protein hierarchy

Silks, like many other biomaterials, have a hierarchical structure. The primary structure is the amino acid sequence of its proteins, mainly consisting of highly repetitive glycine and alanine blocks, which is why silks are often referred to as a block co-polymer. On a secondary structure level, the short side chained alanine is mainly found in the crystalline domains of the nanofibril, glycine is mostly found in the so-called amorphous matrix consisting of helical and beta turn structures. It is the interplay between the hard crystalline segments, and the strained elastic semi-amorphous regions, that gives spider silk its extraordinary properties. Various compounds other than protein are used to enhance the fibre's properties. Pyrrolidine has hygroscopic properties which keeps the silk moist while also warding off ant invasion. It occurs in especially high concentration in glue threads. Potassium hydrogen phosphate releases hydrogen ions in aqueous solution, resulting in a pH of about 4, making the silk acidic and thus protecting it from fungi and bacteria that would otherwise digest the protein. Potassium nitrate is believed to prevent the protein from denaturing in the acidic milieu.
This first very basic model of silk was introduced by Termonia in 1994 who suggested crystallites embedded in an amorphous matrix interlinked with hydrogen bonds. This model has refined over the years: semi-crystalline regions were found as well as a fibrillar skin core model suggested for spider silk, later visualised by AFM and TEM. Sizes of the nanofibrillar structure and the crystalline and semi-crystalline regions were revealed by neutron scattering.
It has been possible to relate microstructural information and macroscopic mechanical properties of the fibres. The results show that ordered regions mainly reorient by deformation for low-stretched fibres and the fraction of ordered regions increases progressively for higher stretching of the fibres.

Non-protein composition

Various compounds other than protein are found in spider silks, such as sugars, lipids, ions, and pigments that might affect the aggregation behaviour and act as a protection layer in the final fibre.

Biosynthesis and fibre spinning

The production of silks, including spider silk, differs in an important aspect from the production of most other fibrous biological materials: rather than being continuously grown as keratin in hair, cellulose in the cell walls of plants, or even the fibres formed from the compacted faecal matter of beetles; it is "spun" on demand from liquid silk precursor out of specialised glands.
The spinning process occurs when a fibre is pulled away from the body of a spider, whether by the spider's legs, by the spider's falling under its own weight, or by any other method including being pulled by humans. The term "spinning" is misleading because no rotation of any component occurs, but rather comes from analogy to the textile spinning wheels. Silk production is a pultrusion, similar to extrusion, with the subtlety that the force is induced by pulling at the finished fibre rather than being squeezed out of a reservoir. The unspun silk fibre is pulled through silk glands of which there may be both numerous duplicates and different types of gland on any one spider species.

Silk gland

The gland's visible, or external, part is termed the spinneret. Depending on the complexity of the species, spiders will have two to eight spinnerets, usually in pairs. There exist highly different specialised glands in different spiders, ranging from simply a sac with an opening at one end, to the complex, multiple-section major ampullate glands of the golden silk orb-weavers.
Behind each spinneret visible on the surface of the spider lies a gland, a generalised form of which is shown in the figure to the right, "Schematic of a generalised gland".
. Each differently coloured section highlights a discrete section of the gland.
;Gland characteristics
  1. The first section of the gland labelled 1 on Figure 1 is the secretory or tail section of the gland. The walls of this section are lined with cells that secrete proteins Spidroin I and Spidroin II, the main components of this spider's dragline. These proteins are found in the form of droplets that gradually elongate to form long channels along the length of the final fibre, hypothesised to assist in preventing crack formation or even self-healing of the fibre.
  2. The second section is the storage sac. This stores and maintains the gel-like unspun silk dope until it is required by the spider. In addition to storing the unspun silk gel, it secretes proteins that coat the surface of the final fibre.
  3. The funnel rapidly reduces the large diameter of the storage sac to the small diameter of the tapering duct.
  4. The final length is the tapering duct, the site of most of the fibre formation. This consists of a tapering tube with several tight about turns, a valve almost at the end ending in a spigot from which the solid silk fibre emerges. The tube here tapers hyperbolically, therefore the unspun silk is under constant elongational shear stress, which is an important factor in fibre formation. This section of the duct is lined with cells that exchange ions, reduce the dope pH from neutral to acidic, and remove water from the fibre. Collectively, the shear stress and the ion and pH changes induce the liquid silk dope to undergo a phase transition and condense into a solid protein fibre with high molecular organisation. The spigot at the end has lips that clamp around the fibre, controlling fibre diameter and further retaining water.
  5. Almost at the end of the tapering duct is a valve, approximate position marked "5" on figure 1. Though discovered some time ago, the precise purpose of this valve is still under discussion. It is believed to assist in restarting and rejoining broken fibres, acting much in the way of a helical pump, regulating the thickness of the fibre, and/or clamping the fibre as a spider falls upon it. There is some discussion of the similarity of the silk worm's silk press and the roles each of these valves play in the production of silk in these two organisms.
Throughout the process the unspun silk appears to have a nematic texture, in a similar manner to a liquid crystal, arising in part due to the extremely high protein concentration of silk dope. This allows the unspun silk to flow through the duct as a liquid but maintain a molecular order.
As an example of a complex spinning field, the spinneret apparatus of an adult Araneus diadematus consists of the glands shown below. Similar multiple gland architecture exists in the black widow spider.
To artificially synthesise spider silk into fibres, there are two broad areas that must be covered. These are synthesis of the feedstock, and synthesis of the spinning conditions. There have been a number of different approaches but few of these methods have produced silk that can efficiently be synthesised into fibres.

Feedstock

The molecular structure of unspun silk is both complex and extremely long. Though this endows the silk fibres with their desirable properties, it also makes replication of the fibre somewhat of a challenge. Various organisms have been used as a basis for attempts to replicate some components or all of some or all of the proteins involved. These proteins must then be extracted, purified and then spun before their properties can be tested.
OrganismDetailsAverage Maximum breaking stress Average Strain Reference
Darwin's bark spider Malagasy spider famed for making webs with strands up to 25 m long, across rivers. "C. darwini silk is more than twice as tough as any previously described silk"1850 ±35033 ±0.08
Nephila clavipes'Typical golden orb weaving spider710–120018–27
Bombyx mori SilkwormsSilkworms were genetically altered to express spider proteins and fibres measured.66018.5
E. coliSynthesising a large and repetitive molecule is complex, but required for the strongest silk. Here E. coli'' was engineered to produce a 556 kDa protein. Fibers spun from these synthetic spidroins are the first to fully replicate the mechanical performance of natural spider silk by all common metrics.1030 ±11018 ±6
GoatsGoats were genetically modified to secrete silk proteins in their milk, which could then be purified.285–25030–40
Tobacco & potato plantsTobacco and potato plants were genetically modified to produce silk proteins. Patents were granted, but no fibres have yet been described in the literature.n/an/a

Geometry

Spider silks with comparatively simple molecular structure need complex ducts to be able to spin an effective fibre. There have been a number of methods used to produce fibres, of which the main types are briefly discussed below.

Syringe and needle

Feedstock is simply forced through a hollow needle using a syringe. This method has been shown to make fibres successfully on multiple occasions.
Although very cheap and easy to produce, the shape and conditions of the gland are very loosely approximated. Fibres created using this method may need encouragement to change from liquid to solid by removing the water from the fibre with such chemicals as the environmentally undesirable methanol or acetone, and also may require post-stretching of the fibre to attain fibres with desirable properties.

Microfluidics

As the field of microfluidics matures, it is likely that more attempts to spin fibres will be made using microfluidics. These have the advantage of being very controllable and able to test spin very small volumes of unspun fibre but setup and development costs are likely to be high. A patent has been granted in this area for spinning fibres in a method mimicking the process found in nature, and fibres are successfully being continuously spun by a commercial company.

Electrospinning

is a very old technique whereby a fluid is held in a container in a manner such that it is able to flow out through capillary action. A conducting substrate is positioned below, and a large difference in electrical potential is applied between the fluid and the substrate. The fluid is attracted to the substrate, and tiny fibres jump almost instantly from their point of emission, the Taylor cone, to the substrate, drying as they travel. This method has been shown to create nano-scale fibres from both silk dissected from organisms and regenerated silk fibroin.

Other artificial shapes formed from silk

Silk can be formed into other shapes and sizes such as spherical capsules for drug delivery, cell scaffolds and wound healing, textiles, cosmetics, coatings, and many others. Spider silk proteins can also self-assemble on superhydrophobic surfaces to generate nanowires, as well as micron-sized circular sheets.

Research milestones

Due to spider silk being a scientific research field with a long and rich history, there can be unfortunate occurrences of researchers independently rediscovering previously published findings. What follows is a table of the discoveries made in each of the constituent areas, acknowledged by the scientific community as being relevant and significant by using the metric of scientific acceptance, citations. Thus, only papers with 50 or more citations are included.
Area of contributionYearMain researchers Title of paperContribution to the field
Chemical Basis1960Fischer, F. & Brander, J."Eine Analyse der Gespinste der Kreuzspinne"
Chemical Basis1960Lucas, F. & et al."The Composition of Arthropod Silk Fibrons; Comparative studies of fibroins"
Gene Sequence1990Xu, M. & Lewis, R. V."Structure of a Protein Superfiber − Spider Dragline Silk"
Mechanical Properties1964Lucas, F."Spiders and their silks"First time compared mechanical properties of spider silk with other materials in a scientific paper.
Mechanical Properties1989Vollrath, F. & Edmonds, D. T."Modulation of the Mechanical Properties of Spider Silk by Coating with Water"First important paper suggesting the water interplay with spider silk fibroin modulating the properties of silk.
Mechanical Properties2001Vollrath, F. & Shao, Z.Z."The effect of spinning conditions on the mechanics of a spider's dragline silk"
Mechanical Properties2006Plaza, G.R., Guinea, G.V., Pérez-Rigueiro, J. & Elices, M."Thermo-hygro-mechanical behavior of spider dragline silk: Glassy and rubbery states"Combined effect of humidity and temperature on the mechanical properties. Glass-transition temperature dependence on humidity.
Structural Characterisation1992Hinman, M.B. & Lewis, R. V"Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber"
Structural Characterisation1994Simmons, A. & et al."Solid-State C-13 Nmr of Nephila-Clavipes Dragline Silk Establishes Structure and Identity of Crystalline Regions"First NMR study of spider silk.
Structural Characterisation1999Shao, Z., Vollrath, F. & et al."Analysis of spider silk in native and supercontracted states using Raman spectroscopy"First Raman study of spider silk.
Structural Characterisation1999Riekel, C., Muller, M.& et al."Aspects of X-ray diffraction on single spider fibers"First X-ray on single spider silk fibres.
Structural Characterisation2000Knight, D.P., Vollrath, F. & et al."Beta transition and stress-induced phase separation in the spinning of spider dragline silk"Secondary structural transition confirmation during spinning.
Structural Characterisation2001Riekel, C. & Vollrath, F."Spider silk fibre extrusion: combined wide- and small-angle X- ray microdiffraction experiments"First X-ray on spider silk dope.
Structural Characterisation2002Van Beek, J. D. & et al."The molecular structure of spider dragline silk: Folding and orientation of the protein backbone"
Structure-Property Relationship1986Gosline, G.M. & et al."The structure and properties of spider silk"First attempt to link structure with properties of spider silk
Structure-Property Relationship1994Termonia, Y"Molecular Modeling of Spider Silk Elasticity"X-ray evidence presented in this paper; simple model of crystallites embedded in amorphous regions.
Structure-Property Relationship1996Simmons, A. & et al."Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk"Two types of alanine-rich crystalline regions were defined.
Structure-Property Relationship2006Vollrath, F. & Porter, D."Spider silk as an archetypal protein elastomer"New insight and model to spider silk based on Group Interaction Modelling.
Native Spinning1991Kerkam, K., Kaplan, D. & et al."Liquid Crystallinity of Natural Silk Secretions"
Native Spinning1999Knight, D.P. & Vollrath, F."Liquid crystals and flow elongation in a spider's silk production line"
Native Spinning2001Vollrath, F. & Knight, D.P."Liquid crystalline spinning of spider silk"The most cited paper on spider silk
Native Spinning2005Guinea, G.V., Elices, M., Pérez-Rigueiro, J. & Plaza, G.R."Stretching of supercontracted fibers: a link between spinning and the variability of spider silk"Explanation of the variability of mechanical properties.
Reconstituted /Synthetic Spider Silk and Artificial Spinning1995Prince, J. T., Kaplan, D. L. & et al."Construction, Cloning, and Expression of Synthetic Genes Encoding Spider Dragline Silk"First successful synthesis of Spider silk by E. coli.
Reconstituted /Synthetic Spider Silk and Artificial Spinning1998Arcidiacono, S., Kaplan, D.L. & et al."Purification and characterization of recombinant spider silk expressed in Escherichia coli"
Reconstituted /Synthetic Spider Silk and Artificial Spinning1998Seidel, A., Jelinski, L.W. & et al."Artificial Spinning of Spider Silk"First controlled wet-spinning of reconstituted spider silk.

Human uses

Peasants in the southern Carpathian Mountains used to cut up tubes built by Atypus and cover wounds with the inner lining. It reportedly facilitated healing, and even connected with the skin. This is believed to be due to antiseptic properties of spider silk and because the silk is rich in vitamin K, which can be effective in clotting blood. Due to the difficulties in extracting and processing substantial amounts of spider silk, the largest known piece of cloth made of spider silk is an textile with a golden tint made in Madagascar in 2009. Eighty-two people worked for four years to collect over one million golden orb spiders and extract silk from them.
The silk of Nephila clavipes was used in research concerning mammalian neuronal regeneration.
Spider silk has been used as a thread for crosshairs in optical instruments such as telescopes, microscopes, and telescopic rifle sights. In 2011, spider silk fibres were used in the field of optics to generate very fine diffraction patterns over N-slit interferometric signals used in optical communications. In 2012, spider silk fibres were used to create a set of violin strings.
Development of methods to mass-produce spider silk has led to manufacturing of military, medical and consumer goods, such as ballistics armour, athletic footwear, personal care products, breast implant and catheter coatings, mechanical insulin pumps, fashion clothing, and outerwear.
Spider silk is used to suspend inertial confinement fusion targets during laser ignition, as it remains considerably elastic and has a high energy to break at temperatures as low as 10–20 K. In addition, it is made from "light" atomic number elements that won't emit x-rays during irradiation that could preheat the target so that the pressure differential required for fusion is not achieved.
Spider silk has been used to create biolenses that could be used in conjunction with lasers to create high-resolution images of the inside of the human body.

Attempts at producing synthetic spider silk

Replicating the complex conditions required to produce fibres that are comparable to spider silk has proven difficult in research and early-stage manufacturing. Through genetic engineering, Escherichia coli bacteria, yeasts, plants, silkworms, and animals have been used to produce spider silk proteins, which have different, simpler characteristics than those from a spider. Extrusion of protein fibres in an aqueous environment is known as "wet-spinning". This process has so far produced silk fibres of diameters ranging from 10 to 60 μm, compared to diameters of 2.5–4 μm for natural spider silk. Artificial spider silks have fewer and simpler proteins than natural dragline silk, and are consequently half the diameter, strength, and flexibility of natural dragline silk.