Social immunity
Social immunity is any antiparasite defence mounted for the benefit of individuals other than the actor. For parasites, the frequent contact, high population density and low genetic variability makes social groups of organisms a promising target for infection: this has driven the evolution of collective and cooperative anti-parasite mechanisms that both prevent the establishment of and reduce the damage of diseases among group members. Social immune mechanisms range from the prophylactic, such as burying beetles smearing their carcasses with antimicrobials or termites fumigating their nests with naphthalene, to the active defenses seen in the imprisoning of parasitic beetles by honeybees or by the miniature 'hitchhiking' leafcutter ants which travel on larger worker's leaves to fight off parasitoid flies. Whilst many specific social immune mechanisms had been studied in relative isolation, it was not until Sylvia Cremer et al.'s 2007 paper "Social Immunity" that the topic was seriously considered. Empirical and theoretical work in social immunity continues to reveal not only new mechanisms of protection but also implications for understanding of the evolution of group living and polyandry. Social immunity describes the additional level of disease protection arising in social groups from collective disease defences, performed either jointly or towards one another. These collective defences complement the individual immunity of all group members and constitute an extra layer of protection at the group level, combining behavioural, physiological and organisational adaptations. These defences can be employed either prophylactically or on demand. DefinitionSylvia Cremer defined social immunity in her seminal 2007 Current Biology paper 'Social Immunity' as the "collective action or altruistic behaviours of infected individuals that benefit the colony". She laid out a conceptual framework for the topic using examples from primates and eusocial insects. Cremer's definition focused on the collective benefits of behaviours and was adopted by other behavioural ecologists when describing immune phenomena which were contingent on the action of multiple individuals. Cremer went on to develop a series of comparisons between personal and social immune systems—she explained that her definition of social immunity encompassed "the nature of these defences that they cannot be performed efficiently by single individuals, but depend strictly on the cooperation of at least two individuals". However, in 2010, Sheena Cotter and Rebecca Kilner proposed to widen the definition of social immunity to "any type of immune response that has been selected to increase the fitness of the challenged individual and one or more recipients", and recommended that the phenomena described by Cremer be known as collective immunity. This definition places importance on the evolutionary origin of behaviours rather than on their functional role at present; Cotter and Kilner explained that their broader definition would include immune behaviours in both animal families and social microbes as well as situations where herd immunity exists due to investment in personal immunity, arguing that this allowed for investigations of the evolution of social immunity to have a "greater depth than would otherwise be possible". They further suggested that the evolution of social immunity be seen as one of the major transitions in evolution. Joël Meunier proposed a further redefinition in his 2015 paper on the role of social immunity in the evolution of group living, suggesting that Cotter and Kilner's definition could problematically encompass immune defences which arise not due to social life but due to shared location; Meunier defines a social immune system as "any collective and personal mechanism that has emerged and/or is maintained at least partly due to the anti-parasite defence it provides to other group members".MechanismsUpon exposure to a parasite, group members must both evaluate the threat it poses and the current level of colony infection in order to respond appropriately. Mechanisms of social immunity are often categorized by the stage of the parasite attack on a group of organisms they target. Some mechanisms are prophylactic whilst others are activated in response to a parasite challenge.In insectsFor a parasite to succeed in infecting multiple members of an insect group, it must complete three key tasks:
Levels of sociality across the class Insecta range from eusocial species to solitary living, with many intermediate systems in between which despite lacking full eusociality still may exhibit parental care or nest cohabitation. Different systems of social organization alter both the possibility and cost-benefit ratio of social immune mechanisms, though the absence of many behaviours currently only recorded in eusocial taxa from non-eusocial taxa may simply be due to a lack of study of these group's social immune systems. For instance it seems plausible that insects living in common nest sites could evolve to remove conspecific corpses from the nest or to isolate an infected group member - and yet these behaviours have only been recorded in eusocial species. Alternatively it may be the case that whilst the three conditions of eusociality themselves are not prerequisites for the emergence of these behaviours, secondary consequences of eusociality are. Perhaps the large number of individuals in eusocial colonies increases the efficiency of collective anti-parasite defences and thus their emergence begins to be selected for; or perhaps the preponderance of non-reproductive individuals is a necessary driver for the evolution of these behaviours, as when in a colony attacked by a parasite they can only increase their indirect fitness via social immunity directed at the queen's brood. The lack of collective defences in some eusocial taxa also shows that social immunity may also not always be adaptive, and that living in a group does not necessitate the expression of any particular suite of social immunity mechanisms. For example, worker termites do not discriminate between infected and uninfected conspecifics, pharaoh ant colonies choose to move into infected nests over uninfected ones and queen wood ants are not repelled but actually attracted to habitats contaminated with entamopathogenic fungi. Inhibiting parasite uptake into the nestA parasite may be passively transported into a nest by a group member or may actively search for the nest; once inside, parasite transmission can be vertical or horizontally. In eusocial insects, the most frequent defence against parasite uptake into the nest is to prevent infection during and/or after foraging, and a wide range of active and prophylactic mechanisms have evolved to this end.
It is currently unclear whether these aversive behaviours evolved and/or are maintained due to social interactions - the increase in direct fitness that avoiding contaminated material confers means that more research is required to tease out the indirect fitness benefits from the direct. Inhibiting the parasite establishing itself within the nestOnce a parasite has entered the nest, colonies must now prevent the establishment of the parasite - this is particularly important for long-lived societies which without would accrue a high parasite load. In eusocial insects the most common mechanisms to stop establishment involve sanitising the nest and integrating substances with antimicrobial activity into nest material - nest hygiene behaviours. Examples include:
Inhibiting intra-group transmissionIf a parasite has entered the nest and established itself, groups must now mount defences which inhibit the spread of parasites from infected to uninfected group members. The risk of infection for an uninfected individual is dependent on three factors: their susceptibility to the parasite, contact rate between infected and uninfected individuals and the infective ability of the parasite. In eusocial insects, defences include:
Nest abandonment is a last resort for a colony overwhelmed by an infection against which the defences listed above have not been effective—infected individuals can then be left deserted in the old nest or expelled from the group whilst the colony travels to a new nest. Other taxaSocial immune systems have been observed across a wide range of taxonomic groups. Allogrooming is found in many animals—for example primates frequently groom others, a behaviour which likely evolved for its hygienic function but has now been co-opted for its additional role in social bonding. Allogrooming in the common vampire bat is associated with the regurgitation of food and may allow other bats to identify which individuals are capable of supplying them with food; the allogrooming behaviours of horses and birds have also been studied. A range of sometimes elaborate cleaning symbioses also exist between many different species, especially in marine fish with their cleaning stations. Corsican blue tits prophylactically line their nest with aromatic plants to ward off mosquitoes and other blood-sucking ornithophillous insects.'s concept of the extended phenotype, human healthcare activities, such as vaccination could be seen as social immunity After the broader definition of social immunity by Cotter and Kilner, numerous examples of social immune behaviours within animal families can be given: túngara frogs create 'foam nests' during breeding in which embryogenesis occurs; these foam nests are imbued with ranaspumin proteins which provide defence against microbial attack and act as a detergent. The three-spined stickleback, grass goby , fringed darter and two species of blenny Using Richard Dawkins's concept of the extended phenotype, the healthcare systems developed by humans could be seen as a form of social immunity. Study speciesThe majority of studies on social immunity have been on eusocial insects. For example, Sylvia Cremer's work uses ants as a model system whilst Rebeca Rosengaus works with termites. Outside of eusocial insects, one emerging model system is the burying beetle Nicrophorus vespilloides.''Nicrophorus vespilloides''Already a model system in evolutionary ecology due to their extensive parental care, burying beetles like N. vespilloides hunt for small vertebrate carcasses which they then bury before intricately preparing it as a resource for its larvae to breed on-these carcasses are scarce and ephemeral yet are necessary for burying beetles' reproductive success. Carcasses are highly contested resources with challenges being launched by other burying beetles and other scavenging species, as well as microbial decomposers. Older carcasses have a higher microbial load and thus have a lower quality as a breeding resource: larvae raised on these carcasses are smaller and in a worse nutritional state–at adulthood these beetles were also smaller, which in N. vespilloides reduces fitness. Daniel Rozen et al. demonstrated in 2008 that N. vespilloides preferentially chooses newer carcasses over old carcasses, and if it is not possible to acquire one of these higher quality carcasses that they use pre and post-hatching parental care to reduce the challenge posed by microbes. Sheena Cotter and Rebecca Kilner demonstrated that part of this anti-microbial parental care involved both parents smearing the carcass with antibacterial anal exudates: their 2009 work demonstrated that when beetles encounter a carcass they upregulate the antibacterial activity of their anal exudate by actively altering its composition, and that the specifics of this social immune system differed between the sexes: female exudate has greater antibacterial activity than males; widowed males increased the antibacterial activity of their exudate whilst a reduction was seen in widowed females.Cotter et al. went on to show the costliness of this social immune response-by providing females with microbe-infested carcasses, they found that the upregulation of antibacterial activity that followed led to a 16% decrease in lifetime reproductive output. This significant reduction in fitness, due to both increased mortality and age-related dropoff in fecundity, explains why the antibacterial activity of the exudate is only induced and not present constitutively. Further work revealed how a trade-off existed between investment in personal immunity vs investment in social immunity, i.e., upon injury, N. vespilloides upregulates its personal immune response whilst concomitantly reducing its social immune response. Recently, the identified a gene associated with social immunity in N. vespilloides: the expression rate of Lys6, a lysozyme, increases 1,409 times when breeding, and goes from the 5,967th most abundant transcript in the transcriptome of gut tissue to the 14th; it was also demonstrated that expression rates of Lys6 covary with the antibacterial activity of the anal exudate. Social immunity efforts peaks during middle-age, in contrast to efforts in personal immunity increasing or being maintained with age in breeding burying beetles. The exudate of the larvae themselves also contains antibacterial substances, with activity peaking at hatching and declining as the larvae age. Rfemoving parents results in a downregulation of antibacterial effort, possibly due to the need to invest energy in other more important tasks that arise due to parental absence. EvolutionComparison with personal immunityMany researchers have noticed marked parallels between the more familiar personal immune systems of individual organisms and the social immune systems described above, and it is generally appreciated among ecological immunologists that rigorous comparative work between these two systems will increase of understanding of the evolution of social immunity. Whilst the specific physiological mechanisms by which immunity is produced differ sharply between the individual and society, it is thought that at a "phenomenological" level the principles of parasite threat and response are similar: parasites must be detected rapidly, responses should differ depending on the parasite in question, spread of the infection must be limited and different components of the individual/society should be afforded different levels of protection depending on their relative fitness contribution. Cremer was the first to do this systematically, and partitioned immunological phenomena into three categories: border defence, soma defence and germ-line defence. Example analogies from Cremer's paper are:
Cotter and Kilner argue that not only is social immunity a useful concept to use when studying the major transitions in evolution, that the origin of social immune systems might be considered a major transition itself. Role in the evolution of group livingThe transition from solitary living to group living brought with it many fitness benefits and the opportunity to exploit a vast array of new ecological niches, but group living also has its pitfalls. Numerous studies have demonstrated an increase in contact-transmitted parasite load with group size increase, and thus research has been done on the role of social immunity in the evolution of early group living. Empirical evidence already exists, from both interspecific and intraspecific comparative studies, that an increase in population density drives an increase in personal immune effort. However, there is also good evidence that the evolution of social immunity leads to a trade-off between effort into personal immune responses vs. effort in social immune responses - physiological and genomic studies have shown that social conditions can lead to a reduction in personal immune effort. Personal immunity in the Australian plague locust decreases upon an increase in population density and increases when artificially isolated. Genomic studies reveal that infected solitary S. gregaria express more genes involved in immunity than infected individuals in the gregarious phase, Bombus terrestris workers also upregualte immune-related genes when experimentally isolated and there are three times more immune-related gene families in solitary insects than in the eusocial honeybees.Joël Meunier argued that the two seemingly contradictory relationships between personal immune effort and population density were a function of two assumptions implicit in the prediction that there should be a negative correlation between personal immune effort and group living:
To assess what current knowledge of social immune systems suggested about whether social immunity was a bypoduct or driver of complex group living, Meunier delineated 30 different mechanisms of social immunity found in eusocial insects and looked for counterparts to these in presocial and solitary insects. Supporting the hypothesis that social immunity was a driver and not a by-product of complex group living, 10 mechanisms had counterparts in presocial insects and 4 in solitary species. Evidence that social immunity mechanisms are selected for at least somewhat due to collective benefits is lacking though – possibly due to the difficulty in isolating the immune benefits from the other benefits that social immunity mechanisms often bestow, and the difficulty in experimentally separating direct fitness from indirect fitness, potentiated in eusocial taxa where sterile/non-reproductive individuals predominatee. More studies on presocial taxa would allow for phyletic analyses to recover the actual path of evolution that different mechanisms of social immunity took. Role in the evolution of polyandryThe origin of polyandry in nature and its adaptive value is a subject of ongoing controversy in evolutionary biology, partly due to the seemingly numerous costs it places on females - additional energetic and temporal allocation to reproduction, increased risk of predation, increased risk of sexually transmitted diseases and increased risk of physical harm caused by copulation/sexual coercion – for eusocial insects, the effects polyandry has on the colony member's coefficient of relatedness is also important, as reducing the relatedness of workers limits the power of kin selection to maintain the ultracooperative behaviours which are vital to a colonies' success. One hypothesis for the evolution of polyandry draws on the disease resistance that increased genetic diversity supposedly brings for a group, and a growing body of evidence from insect taxa supports this hypothesis, some of it discussed above.ConceptSocial immunity is the evolution of an additional level of immunity in the colonies of eusocial insects. Social immunity includes collective disease defences in other stable societies, including those of primates, and has also been broadened to include other social interactions, such as parental care. It is a recently developed concept.Social immunity provides an integrated approach for the study of disease dynamics in societies, combining both the behaviour and physiology of all group members and their social interactions. It thereby links the fields of social evolution and ecological immunology. Social immunity also affects epidemiology, as it can impact both the course of an infection at the individual level, as well as the spread of disease within the group. Social immunity differs from similar phenomena that can occur in groups that are not truly social. These include density dependent prophylaxis, which is the up regulation of the individual immunity of group members under temporal crowding, and herd immunity, which is the protection of susceptible individuals in an otherwise immune group, where pathogens are unable to spread due to the high ratio of immune to susceptible hosts. Further, although social immunity can be achieved through behavioural, physiological or organisational defences, these components are not mutually exclusive and often overlap. For example, organisational defences, such as an altered interaction network that influences disease spread, emerge from chemical and behavioural processes. Disease risk in social groupsSociality, although a very successful way of life, is thought to increase the per-individual risk of acquiring disease, simply because close contact with conspecifics is a key transmission route for infectious diseases. As social organisms are often densely aggregated and exhibit high levels of interaction, pathogens can more easily spread from infectious to susceptible individuals. The intimate interactions often found in social insects, such as the sharing of food through regurgitation, are further possible routes of pathogen transmission. As the members of social groups are typically closely related, they are more likely to be susceptible to the same pathogens. This effect is compounded when overlapping generations are present, which facilitates the horizontal transmission of pathogens from the older generation to the next. In the case of species that live in nests/burrows, stable, homeostatic temperatures and humidity may create ideal conditions for pathogen growth.Disease risk is further affected by the ecology. For example, many social insects nest and forage in habitats that are rich in pathogens, such as soil or rotting wood, exposing them to a plethora of microparasites, e.g. fungi, bacteria, viruses and macroparasites, e.g. mites and nematodes. In addition, shared food resources, such as flowers, can act as disease hubs for social insect pollinators, promoting both interspecific and intraspecific pathogen transmission. This may be a contributing factor in the spread of emergent infectious diseases in bees. All of these factors combined can therefore contribute to rapid disease spread following an outbreak, and, if transmission is not controlled, an epizootic may result. Hence, social immunity has evolved to reduce and mitigate this risk. Components of social immunity in insect societiesNest hygieneSocial insects have evolved an array of sanitary behaviours to keep their nests clean, thereby reducing the probability of parasite establishment and spread within the colony. Such behaviours can be employed either prophylactically, or actively, upon demand. For example, social insects can incorporate materials with antimicrobial properties into their nest, such as conifer resin, or faecal pellets that contain symbiont derived antimicrobials. These materials reduce the growth and density of many detrimental bacteria and fungi. Antimicrobial substances can also be self-produced. Secretions from the metapleural glands of ants and volatile chemical components produced by termites have been shown to inhibit fungal germination and growth. Another important component of nest hygiene is waste management, which involves strict spatial separation of clean nest areas and waste dumps. Social insect colonies often deposit their waste outside of the nest, or in special compartments, including waste chambers for food leftovers, “toilets” for defecation and “graveyards”, where dead individuals are deposited, reducing the probability of parasite transmission from potentially infected cadavers. Where social insects place their waste is also important. For example, leaf cutting ants living in xeric conditions deposit their waste outside the nest, whilst species living in the tropics tend to keep it in special chambers within the nest. It has been proposed that this difference is related to the likelihood that the external environment reduces or enhances microbial growth. For xeric-living ants, placing waste outside will tend to inhibit infectious material, as microbes are usually killed under hot, dry conditions. On the other hand, placing waste into warm, humid environments will promote microbial growth and disease transmission, so it may be safer for ants living in the topics to contain their waste within the nest. Honeybees have evolved the ability to actively maintain a constant temperature within their hives to ensure optimal brood development. Upon exposure to Ascoshpaera apis, a heat sensitive fungal pathogen that causes chalk brood, honeybees increase the temperature of the brood combs, thereby creating conditions that disfavour the growth of the pathogen. This "social fever" is performed before symptoms of the disease are expressed and can therefore be viewed as a preventative measure to avoid chalk brood outbreaks in the colony.Sanitary care of group membersSanitary care reduces the risk of infection for group members and can slow the course of disease. For example, grooming is the first line of defence against externally-infected pathogens such as entomopathogenic fungi, whose infectious conidia can be mechanically removed through self- and allogrooming to prevent infection. As conidia of such fungi only loosely attach to the cuticle of the host to begin with, grooming can dramatically reduce the number of infective stages. Although grooming is also performed often in the absence of a pathogen, it is an adaptive response, with both the frequency and duration of grooming increasing when pathogen exposure occurs. In several species of social insect, allogrooming of contaminated workers has been shown to dramatically improve survival, compared to single workers that can only conduct self-grooming.In the case of ants, pathogens large enough to be removed by grooming are first collected into the infrabuccal pocket, which prevents the pathogens entering the digestive system. In the pocket, they may be mixed labial gland secretions or with poison the ants have taken up into their mouths. These compounds reduce germination viability, rendering conidia non-infectious when later expelled as an infrabuccal pellet. In the case of termites, pathogens removed during grooming are not filtered out before entering the gut, but are allowed to pass through the digestive tract. Symbiotic microorganisms in the hindgut of the termite are also able to deactivate pathogens, rendering them non-infectious when they are excreted. In addition to grooming, social insects can apply host- and symbiont-derived antimicrobial compounds to themselves and each other to inhibit pathogen growth or germination. In ants, the application of antimicrobials is often performed in conjunction with grooming, to provide simultaneous mechanical removal and chemical treatment of pathogens. In ants, poison can be taken up into the mouth from the acidopore, and stored in the mouth, to be redistributed whilst grooming. In the ant Lasius neglectus, the poison produced by the acidopore is composed largely of formic acid, but also contains acetic acid. Inhibition assays of the poison droplet against the fungal pathogen Metarhizium found that the formic acid alone substantially reduces fungal conidia viability, but that all poison components work synergistically to inhibit conidia viability, by as much as 96%. Dealing with infected group membersInfected individuals and diseased corpses pose a particular risk for social insects because they can act a source of infection for the rest of the colony. As mentioned above, dead nestmates are typically removed from the nest to reduce the potential risk of disease transmission. Infected or not, ants that are close to death can also voluntarily remove themselves from the colony to limit this risk. Honeybees can reduce social interactions with infected nest mates, actively drag them out of the hive, and may bar them from entering at all. "Hygienic behaviour" is the specific removal of infected brood from the colony and has been reported in both honeybees and ants. In honeybees, colonies have been artificially selected to perform this behavior faster. These "hygienic" hives have improved recovery rates following brood infections, as the earlier infected brood is removed, the less likely it is to have become contagious already. Cannibalism of infected nest mates is an effective behaviour in termites, as ingested infectious material is destroyed by antimicrobial enzymes present in their guts. These enzymes function by breaking down the cell walls of pathogenic fungi, for example, and are produced both by the termite itself and their gut microbiota. If there are too many corpses to cannibalise, termites bury them in the nest instead. Like removal in ants and bees, this isolates the corpses to contain the pathogen, but does not prevent their replication. Some fungal pathogens manipulate their ant hosts into leaving the nest and climbing plant stems surrounding the colony. There, attached to the stem, they die and rain down new spores onto healthy foragers. To combat these fungi, healthy ants actively search for corpses on plant stems and attempt to remove them before they can release their sporesColony-level immunisationis a reduced susceptibility to a parasite upon secondary exposure to the same parasite. The past decade has revealed that immunisation occurs in invertebrates and is active against a wide range of parasites. It occurs in two forms: specific immune priming particular parasite or a general immune up-regulation that promotes unspecific protection against a broad range of parasites. In any case, the underlying mechanisms of immunisation in invertebrates are still mostly elusive. In social animals, immunisation is not restricted to the level of the individual, but can also occur at the society level, via 'social immunisation'. Social immunisation occurs when some proportion of the group's members are exposed to a parasite, which then leads to the protection of the whole group, upon secondary contact to the same parasite. Social immunisation has been so far described in a dampwood termite-fungus system, a garden ant-fungus system and a carpenter ant–bacterium system. In all cases, social contact with pathogen-exposed individuals promoted reduced susceptibility in their nestmates, upon subsequent exposure to the same pathogen. In the ant-fungus and termite-fungus systems, social immunisation was shown to be caused by the transfer of fungal conidia during allogrooming, from the exposed insects to nestmates performing grooming. This contamination resulted in low-level infections of the fungus in the nestmates, which stimulated their immune system, and protected them against subsequent lethal exposures to the same pathogen. This method of immunisation parallels variolation, an early form of human vaccination, which used live pathogens to protect patients against, for example, smallpoxOrganisational defenceOrganisational disease defence — or organisational immunity — refers to patterns of social interactions which could, hypothetically, mitigate disease transmission in a social group. As disease transmission occurs through social interactions, changes in the type and frequency of these interactions are expected to modulate disease spread. Organisational immunity is predicted to have both a constitutive and an induced component. The innate, organisational substructure of social insect colonies may provide constitutional protection of the most valuable colony members, the queens and brood, as disease will be contained within subgroups. Social insect colonies are segregated into worker groups that experience different disease hazards, where the young and reproductive individuals interact minimally with the workers performing the tasks with higher disease risk. This segregation can arise as a result of the physical properties of the nest or the differences in space usage of the individuals. It can also result from age- or task-biased interactions. Distinct activity patterns between group members has also been hypothesized to influence disease spread. It is further assumed that social insects may further modulate their interaction networks upon disease coming into the colony. However, the organisational immunity hypothesis is currently mainly supported by theoretical models and awaits empirical testing. |