Ship breaking


Ship-breaking or ship demolition is a type of ship disposal involving the breaking up of ships for either a source of parts, which can be sold for re-use, or for the extraction of raw materials, chiefly scrap. It may also be known as ship dismantling, ship cracking, or ship recycling. Modern ships have a lifespan of 25 to 30 years before corrosion, metal fatigue and a lack of parts render them uneconomical to operate. Ship-breaking allows the materials from the ship, especially steel, to be recycled and made into new products. This lowers the demand for mined iron ore and reduces energy use in the steelmaking process. Fixtures and other equipment on board the vessels can also be reused. While ship-breaking is sustainable, there are concerns about the use by poorer countries without stringent environmental legislation. It is also labour-intensive, and considered one of the world's most dangerous industries.
In 2012, roughly 1,250 ocean ships were broken down, and their average age was 26 years. In 2013, the world total of demolished ships amounted to 29,052,000 tonnes, 92% of which were demolished in Asia. As of January 2020, India has the largest global share at 30%; followed by Bangladesh, China and Pakistan. Alang, India currently has the world's largest ship graveyard, followed by Chittagong Ship Breaking Yard in Bangladesh and Gadani in Pakistan.
The largest sources of ships are states of China, Greece and Germany respectively, although there is a greater variation in the source of carriers versus their disposal. The ship-breaking yards of India, Bangladesh, China and Pakistan employ 225,000 workers as well as providing many indirect jobs. In Bangladesh, the recycled steel covers 20% of the country's needs and in India it is almost 10%.
As an alternative to ship-breaking, ships may be sunk to create artificial reefs after legally-mandated removal of hazardous materials, or sunk in deep ocean waters. Storage is a viable temporary option, whether on land or afloat, though all ships will be eventually scrapped, sunk, or preserved for museums.

History

Wooden-hulled ships were simply set on fire or 'conveniently sunk'. In Tudor times, ships were also dismantled and the timber re-used. This procedure was no longer applicable with the advent of metal-hulled boats.
.
In 1880, Denny Brothers of Dumbarton used forgings made from scrap maritime steel in their shipbuilding. Many other nations began to purchase British ships for scrap by the late 19th century, including Germany, Italy, the Netherlands and Japan. The Italian industry started in 1892, and the Japanese after an 1896 law had been passed to subsidise native shipbuilding.
After being damaged or involved in a disaster, liner operators did not want the name of the broken ship to tarnish the brand of their passenger services. The final voyage of many Victorian ships was with the final letter of their name chipped off.
In the 1930s, it became cheaper to 'beach' a boat and run her ashore as opposed to using a dry dock. The ship would have to weigh as little as possible and run ashore at full speed. Dismantling operations required a rise of tide and close proximity to a steel-works. Electric shears, a wrecking ball and oxy-acetylene torches were used. The technique of the time is almost identical to that of developing countries today. Similarly, Thos W Ward Ltd., one of the largest breakers in the United Kingdom in the 1930s, would recondition and sell all furniture and machinery. Many historical artifacts were sold at public auctions: the Cunarder, sold as scrap for, received high bids for her fittings worldwide. However, even with obsolete technology, any weapons and military information were carefully removed.

Shifting to Asia

Until the late 20th century, the majority of ship-breaking activity took place in the port cities of industrialized countries such as the United Kingdom and the United States. Those dismantlers that still remain in the United States work primarily on government surplus vessels.
Starting in the mid-20th century, East Asian countries with lower labor costs began to dominate ship-breaking, moving as labor costs rose, initially from countries such as Japan and Hong Kong, to Korea and Taiwan and then to China. For example, the southern port city of Kaohsiung in Taiwan was the world's leading dismantling site in the late 1960s and 1970s, breaking up 220 ships totaling 1.6 million tons in 1972 alone; in 1977, Taiwan continued to dominate the industry with more than half the market share, followed by Spain and Pakistan. At the time, Bangladesh had no capacity at all. However, the sector is volatile and fluctuates wildly, and Taiwan processed just 2 ships 13 years later as wages across East Asia rose. For comparison, depending on their profession, shipbreakers in Kaohsiung earned from to per day in 1973.
In 1960, after a severe cyclone, the Greek ship M D Alpine was stranded on the shores of Sitakunda, Chittagong. It could not be re-floated and so remained there for several years. In 1965, the then in East Pakistan, Chittagong Steel House bought the ship and had it scrapped. It took years to scrap the vessel, but the work gave birth to the industry in Bangladesh.
Until 1980 the Gadani ship-breaking yard of Pakistan was the largest ship-breaking yard in the world.
Tightening environmental regulations resulted in increased costs of hazardous waste disposal in industrialised countries in the 1980s, causing ships to be exported to lower income nations, chiefly South Asia. This, in turn, created a far worse environmental problem, subsequently leading to the Basel Convention. In 2004 a Basel Convention decision officially classified old ships as “toxic waste”, preventing them from leaving a country without the permission of the importing state. This has led to a resurgence of recycling in environmentally-compliant locations in developed countries, especially in former ship building yards.
On 31 December 2005, the French Navy's left Toulon to be dismantled in Alang, India despite protests over improper disposal capabilities and facilities for the toxic wastes. On 6 January 2006 the Supreme Court of India temporarily denied access to Alang, and the Conseil d'État ordered Clemenceau to return to French waters. Able UK in Hartlepool received a new disassembly contract to use accepted practices in scrapping the ship. The dismantling started on 18 November 2009 and the break-up was completed by the end of 2010, and the event was considered a turning point in the treatment of redundant vessels. Europe and the United States have actually had a resurgence in ship scrapping since the 1990s.
In 2009 the Bangladesh Environmental Lawyers Association won a legal case prohibiting all substandard ship-breaking. For 14 months the industry could not import ships and thousands of jobs were lost before the ban was annulled. That same year, the global recession and lower demand for goods led to an increase in the supply of ships for decommissioning. The rate of scrapping is inversely correlated to the freight price, which collapsed in 2009.

Technique

The decommissioning process is entirely different in developed countries than it is in developing countries. In both cases, ship-breakers bid for the ship, and the highest bidder wins the contract. The ship-breaker then acquires the vessel from the international broker who deals in outdated ships. The price paid is around $400 per tonne and the poorer the environmental legislation the higher the price. The purchase of water-craft makes up 69% of the income earned by the industry in Bangladesh, versus 2% for labour costs. The boat is taken to the decommissioning location either under its own power or with the use of tugs.

Developing countries

In developing countries, chiefly the Indian subcontinent, ships are run ashore on gently sloping sand tidal beaches at high tide so that they can be accessed for disassembly. As aforementioned, the sizeable ship-breaking industry of Bangladesh traces its origin to a ship beached there accidentally during a cyclone. Manoeuvring a large ship onto a beach at high speed takes skill and daring even for a specialist captain, and is not always successful. Next, the anchor is dropped to steady the ship and the engine is shut down. It takes 50 labourers about three months to break down a normal-sized cargo vessel of about 40,000 tonnes.
The decommissioning begins with the draining of fuel and firefighting liquid, which is sold to the trade. Any re-usable items—wiring, furniture and machinery—are sent to local markets or the trade. Unwanted materials become inputs to their relevant waste streams. Often, in less-developed nations, these industries are no better than ship-breaking. For example, the toxic insulation is usually burnt off copper wire to access the metal. Some crude safety precautions exist—chickens are lowered into the chambers of the ship, and if the birds return alive, they are considered safe.
Sledgehammers and oxy-acetylene gas-torches are used to cut up the steel hull. Cranes are not typically used on the ship, because of costs. Pieces of the hull simply fall off and are dragged up on the beach, possibly aided with a winch or bulldozer. These are then cut into smaller pieces away from the coast. 90% of the steel is re-rollable scrap: higher quality steel plates that are heated and reused as reinforcement bar for construction. The remainder is transported to electric arc furnaces to be melted down into ingots for re-rolling mills. In the re-rolling mills, the heating of painted steel plates generates dioxins. Substances which are costly to dispose of, such as hazardous waste, are left on the beach or set on fire, even old batteries and half-empty cans of paint. Stockpiled in Bangladesh, for example, are 79,000 tonnes of asbestos, 240,000 tonnes of PCBs and 210,000 tonnes of ozone-depleting substances.

Developed countries

In developed countries the dismantling process should mirror the technical guidelines for the environmentally sound management of the full and partial dismantling of ships, published by the Basel Convention in 2003. Recycling rates of 98% can be achieved in these facilities.
Prior to dismantling, an inventory of dangerous substances should be compiled. All hazardous materials and liquids, such as bilge water, are removed before disassembly. Holes should be bored for ventilation and all flammable vapours are extracted.
Vessels are initially taken to a dry dock or a pier, although a dry dock is considered more environmentally friendly because all spillage is contained and can easily be cleaned up. Floating is, however, cheaper than a dry dock. Storm water discharge facilities will stop an overflow of toxic liquid into the waterways. The carrier is then secured to ensure its stability. Often the propeller is removed beforehand to allow the water-craft to be moved into shallower water.
Workers must completely strip the ship down to a bare hull, with objects cut free using saws, grinders, abrasive cutting wheels, hand held shears, plasma and gas torches. Anything of value, such as spare parts and electronic equipment is sold for re-use, although labour costs mean that low value items are not economical to sell. The Basel Convention demands that all yards separate hazardous and non-hazardous waste and have appropriate storage units, and this must be done before the hull is cut up. Asbestos, found in the engine room, is isolated and stored in custom-made plastic wrapping prior to being placed in secure steel containers, which are then landfilled.
Many hazardous wastes can be recycled into new products. Examples include lead-acid batteries or electronic circuit boards. Another commonly used treatment is cement-based solidification and stabilization. Cement kilns are used because they can treat a range of hazardous wastes by improving physical characteristics and decreasing the toxicity and transmission of contaminants. A hazardous waste may also be "destroyed" by incinerating it at a high temperature; flammable wastes can sometimes be burned as energy sources. Some hazardous waste types may be eliminated using pyrolysis in a high temperature electrical arc, in inert conditions to avoid combustion. This treatment method may be preferable to high temperature incineration in some circumstances such as in the destruction of concentrated organic waste types, including PCBs, pesticides and other persistent organic pollutants. Dangerous chemicals can also be permanently stored in landfills as long as leaching is prevented.
Valuable metals, such as copper in electric cable, that are mixed with other materials may be recovered by the use of shredders and separators in the same fashion as e-waste recycling. The shredders cut the electronics into metallic and non-metallic pieces. Metals are extracted using magnetic separators, air flotation separator columns, shaker tables or eddy currents. The plastic almost always contains regulated hazardous waste and cannot be melted down.
Large objects, such as engine parts, are extracted and sold as they become accessible. The hull is cut into 300 tonne sections, starting with the upper deck and working slowly downwards. While oxy-acetylene gas-torches are most commonly used, detonation charges can quickly remove large sections of the hull. These sections are transported to an electric arc furnace to be melted down into new ferrous products, though toxic paint must be stripped prior to heating.

Historical techniques

At Kaohsiung in the late 1960s and 70s, ships to be scrapped were tied up at berths in Dah Jen and Dah Lin Pu, at the southern end of Kaohsiung Harbor. There were a total of 24 breaking berths at Kaohsiung; each berth was rented by the scrapper from the Port Authority at a nominal rate of per square foot per month, and up to could be rented surrounding a long berth at a time. A typical 5,000-ton ship could be broken up in 25 to 30 days.
The process began with "cleaning", a process in which subcontractors would come on board the ship to strip it of loose and flammable items, which were often resold in second-hand shops. After that, the cutting crews would start to dismantle the hull, stern-first; large sections were cut off the ship and moved via cranes and rigging taken from previously-scrapped ships. Because the scrapping at Kaohsiung was done at the docks, scrap metal was placed on trucks waiting to transport it to Kaohsiung's mills.

Risks

Health risks

70% of ships are simply run ashore in developing countries for disassembly, where potentially toxic materials such as asbestos, lead, polychlorinated biphenyls and heavy metals along with lax industrial safety standards pose a danger for the workers. Burns from explosions and fire, suffocation, mutilation from falling metal, cancer, and disease from toxins are regular occurrences in the industry. Asbestos was used heavily in ship construction until it was finally banned in most of the developed world in the mid-1980s. Currently, the costs associated with removing asbestos, along with the potentially expensive insurance and health risks, have meant that ship-breaking in most developed countries is no longer economically viable. Dangerous vapors and fumes from burning materials can be inhaled, and dusty asbestos-laden areas are commonplace.
Removing the metal for scrap can potentially cost more than the value of the scrap metal itself. In the developing world, however, shipyards can operate without the risk of personal injury lawsuits or workers' health claims, meaning many of these shipyards may operate with high health risks. Protective equipment is sometimes absent or inadequate. The sandy beaches cannot sufficiently support the heavy equipment, which is thus prone to collapse. Many are injured from explosions when flammable gas is not removed from fuel tanks. In Bangladesh, a local watchdog group claims that one worker dies a week and one is injured per a day on average.
The problem is caused by negligence from national governments, shipyard operators, and former ship owners disregarding the Basel Convention. According to the Institute for Global Labour and Human Rights, workers who attempt to unionize are fired and then blacklisted. The employees have no formal contract or any rights, and sleep in over-crowded hostels. The authorities produce no comprehensive injury statistics, so the problem is underestimated. Child labour is also widespread: 20% of Bangladesh's ship-breaking workforce are below 15 years of age, mainly involved in cutting with gas torches.
There is, however, an active ship-breaker's union in Mumbai, India since 2003 with 15,000 members, which strikes to ensure fatality compensation. It has set up a sister branch in Alang, gaining paid holidays and safety equipment for workers since 2005. They hope to expand all along the South Asian coastline.
Several United Nations committees are increasing their coverage of ship-breakers' human rights. In 2006, the International Maritime Organisation developed legally binding global legislation which concerns vessel design, vessel recycling and the enforcement of regulation thereof and a 'Green Passport' scheme. Water-craft must have an inventory of hazardous material before they are scrapped, and the facilities must meet health & safety requirements. The International Labour Organization created a voluntary set of guidelines for occupational safety in 2003. Nevertheless, Greenpeace found that even pre-existing mandatory regulation has had little noticeable effect for labourers, due to government corruption, yard owner secrecy and a lack of interest from countries who prioritise economic growth. There are also guards who look out for any reporters. To safeguard worker health, the report recommends that developed countries create a fund to support their families, certify carriers as 'gas-free' and to remove toxic materials in appropriate facilities before export. To supplement the international treaties, organisations such as the NGO Shipbreaking Platform, the Institute for Global Labour and Human Rights and ToxicsWatch Alliance are lobbying for improvements in the industry.

Environmental risks

In recent years, ship-breaking has become an issue of environmental concern beyond the health of the yard workers. Many ship-breaking yards operate in developing nations with lax or no environmental law, enabling large quantities of highly toxic materials to escape into the general environment and causing serious health problems among ship-breakers, the local population, and wildlife. Environmental campaign groups such as Greenpeace have made the issue a high priority for their activities.
Along the Indian subcontinent, ecologically-important mangrove forests, a valuable source of protection from tropical storms and monsoons, have been cut down to provide space for water-craft disassembly. In Bangladesh, for example, 40,000 mangrove trees were illegally chopped down in 2009. The World Bank has found that the country's beaching locations are now at risk from sea level rise. 21 fish and crustacean species have been wiped out in the country as a result of the industry as well. Lead, organotins such as tributyltin in anti-fouling paints, polychlorinated organic compounds, by-products of combustion such as polycyclic aromatic hydrocarbons, dioxins and furans are found in ships and pose a great danger to the environment.
The Basel Convention on the Control of Trans-boundary Movements of Hazardous Wastes and Their Disposal of 1989 has been ratified by 166 countries, including India and Bangladesh, and in 2004, End of Life Ships were subjected to its regulations. It aims to stop the transportation of dangerous substances to less developed countries and mandate the use of regulated facilities. However, Greenpeace reports that neither vessel exporter nor breaking countries are adhering to its policies. The organisation recommends that all parties enforce the Basel Convention in full, and hold those who break it liable. Furthermore, the decision to scrap a ship is often made in international waters, where the convention has no jurisdiction.
The Hong Kong Convention is a compromise. It allows ships to be exported for recycling, as long as various stipulations are met: All water-craft must have an inventory and every shipyard needs to publish a recycling plan to protect the environment. The Hong Kong Convention was adopted in 2009 but with few countries signing the agreement.
In March 2012 the European Commission proposed tougher regulations to ensure all parties take responsibility. Under these rules, if a vessel has a European flag, it must be disposed of in a shipyard on an EU "green list." The facilities would have to show that they are compliant, and it would be regulated internationally in order to bypass corrupt local authorities. However, there is evidence of ship owners changing the flag to evade the regulations. China's scrap industry has vehemently protested against the proposed European regulations. Although Chinese recycling businesses are less damaging than their South Asian counterparts, European and American ship-breakers comply with far more stringent legislation.

List of ship-breaking yards

The following are some of world's largest ship-breaking yards:

Bangladesh

As of January 2020, India has 30% share of ship breaking. Once India passes the planned "Recycling of Ships Act, 2019" which ratifies the Hong Kong International Convention for the safe and environmentally sound recycling of ships, the ships that are currently not coming for breaking to India from the treaty nations of USA, Europe and Japan will start to arrive in India, thus doubling its global share of ship breaking to 60%. This will also double India's annual ship breaking revenue to US$2.2 billion.