Shearography or Speckle patternshearing interferometry is a measuring and testing method similar to holographic interferometry. It uses coherent light or coherentsoundwaves to provide information about the quality of different materials in nondestructive testing, strain measurement, and vibration analysis. Shearography is extensively used in production and development in aerospace, wind rotor blades, automotive, and materials research areas. Advantages of shearography are the large area testing capabilities, non-contact properties, its relative insensitivity to environmental disturbances, and its good performance on honeycomb materials, which is a big challenge for traditional nondestructive testing methods.
Shearing function
When a surface area is illuminated with a highly coherent laser light, a stochastical interference pattern is created. This interference pattern is called a speckle, and is projected on a rigid camera's CCD chip. Analogous with Electronic speckle pattern interferometry, to obtain results from the speckle we need to compare it with a known reference light. Shearography uses the test object itself as the known reference; it shears the image so a double image is created. The superposition of the two images, a shear image, represents the surface of the test object at this unloaded state. This makes the method much less sensitive to external vibrations and noise. By applying a small load, the material will deform. A nonuniform material quality will generate a nonuniform movement of the surface of the test object. A new shearing image is recorded at the loaded state and is compared with the sheared image before load. If a flaw is present, it will be seen.
To increase the sensitivity of the measurement method, a real-time phase shift process is used in the sensor. This contains a stepping mirror that shifts the reference beam, which is then processed with a best fit-algorithm and presents the information in real time.
Applications
The main applications are in composite nondestructive testing, where typical flaws are: Disbonds, Delaminations, Wrinkles, Porosity, Foreign objects, and Impact damages. Industries where Shearography is used are: Aerospace, Space, Boats, Wind power, Automotive, Tires, and Art conservation.
Inspection standards
The methodology of shearography is standardized by ASTM International:
ASTM E2581-07, "Standard Practice for Shearography on Polymer Matrix Composites, Sandwich Core Materials and Filament Wound Pressure Vessel’s in Aerospace Applications"