Second-generation biofuels


Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.
First-generation biofuels are made from the sugars and vegetable oils found in food crops using standard processing technologies. Second-generation biofuels are made from different feedstocks and therefore may require different technology to extract useful energy from them. Second generation feedstocks include lignocellulosic biomass or woody crops, agricultural residues or waste, as well as dedicated non-food energy crops grown on marginal land unsuitable for food production.
The term second-generation biofuels is used loosely to describe both the 'advanced' technology used to process feedstocks into biofuel, but also the use of non-food crops, biomass and wastes as feedstocks in 'standard' biofuels processing technologies if suitable. This causes some considerable confusion. Therefore it is important to distinguish between second-generation feedstocks and second-generation biofuel processing technologies.
The development of second-generation biofuels has seen a stimulus since the food vs. fuel dilemma regarding the risk of diverting farmland or crops for biofuels production to the detriment of food supply. The biofuel and food price debate involves wide-ranging views, and is a long-standing, controversial one in the literature.

Introduction

Second-generation biofuel technologies have been developed to enable the use of non-food biofuel feedstocks because of concerns to food security caused by the use of food crops for the production of first-generation biofuels. The diversion of edible food biomass to the production of biofuels could theoretically result in competition with food and land uses for food crops.
First-generation bioethanol is produced by fermenting plant-derived sugars to ethanol, using a similar process to that used in beer and wine-making. This requires the use of food and fodder crops, such as sugar cane, corn, wheat, and sugar beet. The concern is that if these food crops are used for biofuel production that food prices could rise and shortages might be experienced in some countries. Corn, wheat, and sugar beet can also require high agricultural inputs in the form of fertilizers, which limit the greenhouse gas reductions that can be achieved. Biodiesel produced by transesterification from rapeseed oil, palm oil, or other plant oils is also considered a first-generation biofuel.
The goal of second-generation biofuel processes is to extend the amount of biofuel that can be produced sustainably by using biomass consisting of the residual non-food parts of current crops, such as stems, leaves and husks that are left behind once the food crop has been extracted, as well as other crops that are not used for food purposes, such as switchgrass, grass, jatropha, whole crop maize, miscanthus and cereals that bear little grain, and also industry waste such as woodchips, skins and pulp from fruit pressing, etc.
The problem that second-generation biofuel processes are addressing is to extract useful feedstocks from this woody or fibrous biomass, where the useful sugars are locked in by lignin, hemicellulose and cellulose. All plants contain lignin, hemicellulose and cellulose. These are complex carbohydrates. Lignocellulosic ethanol is made by freeing the sugar molecules from cellulose using enzymes, steam heating, or other pre-treatments. These sugars can then be fermented to produce ethanol in the same way as first-generation bioethanol production. The by-product of this process is lignin. Lignin can be burned as a carbon neutral fuel to produce heat and power for the processing plant and possibly for surrounding homes and businesses. Thermochemical processes in hydrothermal media can produce liquid oily products from a wide range of feedstock that has a potential to replace or augment fuels. However, these liquid products fall short of diesel or biodiesel standards. Upgrading liquefaction products through one or many physical or chemical processes may improve properties for use as fuel.

Second-generation technology

The following subsections describe the main second-generation routes currently under development.

Thermochemical routes

Carbon-based materials can be heated at high temperatures in the absence or presence of oxygen, air and/or steam.
These thermochemical processes yield a mixture of gases including hydrogen, carbon monoxide, carbon dioxide, methane and other hydrocarbons, and water. Pyrolysis also produces a solid char. The gas can be fermented or chemically synthesised into a range of fuels, including ethanol, synthetic diesel, synthetic gasoline or jet fuel.
There are also lower temperature processes in the region of 150–374 °C, that produce sugars by decomposing the biomass in water with or without additives.

Gasification

Gasification technologies are well established for conventional feedstocks such as coal and crude oil. Second-generation gasification technologies include gasification of forest and agricultural residues, waste wood, energy crops and black liquor. Output is normally syngas for further synthesis to e.g. Fischer-Tropsch products including diesel fuel, biomethanol, BioDME, gasoline via catalytic conversion of dimethyl ether, or biomethane. Syngas can also be used in heat production and for generation of mechanical and electrical power via gas motors or gas turbines.

Pyrolysis

Pyrolysis is a well established technique for decomposition of organic material at elevated temperatures in the absence of oxygen. In second-generation biofuels applications forest and agricultural residues, wood waste and energy crops can be used as feedstock to produce e.g. bio-oil for fuel oil applications. Bio-oil typically requires significant additional treatment to render it suitable as a refinery feedstock to replace crude oil.

Torrefaction

Torrefaction is a form of [|pyrolysis] at temperatures typically ranging between 200–320 °C. Feedstocks and output are the same as for pyrolysis.

Hydrothermal liquefaction

Hydrothermal liquefaction is a process similar to pyrolysis that can process wet materials. The process is typically at moderate temperatures up to 400 °C and higher than atmospheric pressures. The capability to handle a wide range of materials make hydrothermal liquefaction viable for producing fuel and chemical production feedstock.

Biochemical routes

Chemical and biological processes that are currently used in other applications are being adapted for second-generation biofuels. Biochemical processes typically employ pre-treatment to accelerate the hydrolysis process, which separates out the lignin, hemicellulose and cellulose. Once these ingredients are separated, the cellulose fractions can be fermented into alcohols.
Feedstocks are energy crops, agricultural and forest residues, food industry and municipal biowaste and other biomass containing sugars. Products include alcohols and other hydrocarbons for transportation use.

Types of biofuel

The following second-generation biofuels are under development, although most or all of these biofuels are synthesized from intermediary products such as syngas using methods that are identical in processes involving conventional feedstocks, first-generation and second-generation biofuels. The distinguishing feature is the technology involved in producing the intermediary product, rather than the ultimate off-take.
A process producing liquid fuels from gas is called a gas-to-liquid process. When biomass is the source of the gas production the process is also referred to as biomass-to-liquids.

From syngas using catalysis

The Fischer–Tropsch process is a gas-to-liquid process. When biomass is the source of the gas production the process is also referred to as biomass-to-liquids.
A disadvantage of this process is the high energy investment for the FT synthesis and consequently, the process is not yet economic.
To qualify as a second generation feedstock, a source must not be suitable for human consumption. Second-generation biofuel feedstocks include specifically grown inedible energy crops, cultivated inedible oils, agricultural and municipal wastes, waste oils, and algae. Nevertheless, cereal and sugar crops are also used as feedstocks to second-generation processing technologies. Land use, existing biomass industries and relevant conversion technologies must be considered when evaluating suitability of developing biomass as feedstock for energy.

Energy crops

Plants are made from lignin, hemicellulose and cellulose; second-generation technology uses one, two or all of these components. Common lignocellulosic energy crops include wheat straw, Arundo donax, Miscanthus spp., short rotation coppice poplar and willow. However, each offers different opportunities and no one crop can be considered 'best' or 'worst'.

Municipal solid waste

Municipal Solid Waste comprises a very large range of materials, and total waste arisings are increasing. In the UK, recycling initiatives decrease the proportion of waste going straight for disposal, and the level of recycling is increasing each year. However, there remains significant opportunities to convert this waste to fuel via gasification or pyrolysis.

Green waste

Green waste such as forest residues or garden or park waste may be used to produce biofuel via different routes. Examples include Biogas captured from biodegradable green waste, and gasification or hydrolysis to syngas for further processing to biofuels via catalytic processes.

Black liquor

Black liquor, the spent cooking liquor from the kraft process that contains concentrated lignin and hemicellulose, may be gasified with very high conversion efficiency and greenhouse gas reduction potential to produce syngas for further synthesis to e.g. biomethanol or BioDME.
The yield of crude tall oil from process is in the range of 30 – 50 kg / ton pulp.

Greenhouse gas emissions

Lignocellulosic biofuels reduces greenhouse gas emissions by 60–90% when compared with fossil petroleum, which is on par with the better of current biofuels of the first-generation, where typical best values currently is 60–80%. In 2010, average savings of biofuels used within EU was 60%. In 2013, 70% of the biofuels used in Sweden reduced emissions with 66% or higher..

Commercial development

An operating lignocellulosic ethanol production plant is located in Canada, run by Iogen Corporation. The demonstration-scale plant produces around 700,000 litres of bioethanol each year. A commercial plant is under construction. Many further lignocellulosic ethanol plants have been proposed in North America and around the world.
The Swedish specialty cellulose mill Domsjö Fabriker in Örnsköldsvik, Sweden develops a biorefinery using Chemrec's black liquor gasification technology. When commissioned in 2015 the biorefinery will produce 140,000 tons of biomethanol or 100,000 tons of BioDME per year, replacing 2% of Sweden's imports of diesel fuel for transportation purposes. In May 2012 it was revealed that Domsjö pulled out of the project, effectively killing the effort.
In the UK, companies like INEOS Bio and British Airways are developing advanced biofuel refineries, which are due to be built by 2013 and 2014 respectively. Under favourable economic conditions and strong improvements in policy support, NNFCC projections suggest advanced biofuels could meet up to 4.3 per cent of the UK's transport fuel by 2020 and save 3.2 million tonnes of each year, equivalent to taking nearly a million cars off the road.
Helsinki, Finland, 1 February 2012 – UPM is to invest in a biorefinery producing biofuels from crude tall oil in Lappeenranta, Finland. The industrial scale investment is the first of its kind globally. The biorefinery will produce annually approximately 100,000 tonnes of advanced second-generation biodiesel for transport. Construction of the biorefinery will begin in the summer of 2012 at UPM’s Kaukas mill site and be completed in 2014. UPM's total investment will amount to approximately EUR 150 million.
Calgary, Alberta, 30 April 2012 – Iogen Energy Corporation has agreed to a new plan with its joint owners Royal Dutch Shell and Iogen Corporation to refocus its strategy and activities. Shell continues to explore multiple pathways to find a commercial solution for the production of advanced biofuels on an industrial scale, but the company will NOT pursue the project it has had under development to build a larger scale cellulosic ethanol facility in southern Manitoba.
In India, Indian Oil Companies have agreed to build seven second generation refineries across the country. The companies who will be participating in building of 2G biofuel plants are Indian Oil Corporation, HPCL and BPCL. In May 2018, the Government of India unveiled a biofuel policy wherein a sum of INR 5,000 crores was allocated to set-up 2G biorefineries. Indian oil marketing companies were in a process of constructing 12 refineries with a capex of INR 10,000 crores.