Science policy of the United States


The science policy of the United States is the responsibility of many organizations throughout the federal government. Much of the large-scale policy is made through the legislative budget process of enacting the yearly federal budget, although there are other legislative issues that directly involve science, such as energy policy, climate change, and stem cell research. Further decisions are made by the various federal agencies which spend the funds allocated by Congress, either on in-house research or by granting funds to outside organizations and researchers.
Professor N. Rosenberg, one of the pioneers of technological innovation research, pointed out that industrial research laboratories, if not the most important institutional innovations in institutional innovation in the 20th century, are also one of the most important institutional innovations. Although not the first invention of the United States, this system has a wider spread and stronger influence in the US economy than in other countries.
The USA devoted 2.81% of GDP to research and development in 2012. The private sector contributed two-thirds of the total. The Obama administration had fixed a target of a 3% ratio by the end of his presidency in 2016.

Legislating science policy

In the Executive Office of the President, the main body advising the president on science policy is the Office of Science and Technology Policy. Other advisory bodies exist within the Executive Office of the President, including the President's Council of Advisors on Science and Technology and the National Science and Technology Council.
In the United States Congress, a number of congressional committees have jurisdiction over legislation on science policy, most notably the House Committee on Science and Technology and the Senate Committee on Commerce, Science and Transportation, and their subcommittees. These committees oversee the various federal research agencies that are involved in receiving funding for scientific research. Oversight of some agencies may fall under multiple committees, for example the Environmental Protection Agency.
The number of Congressional members and other politicians with backgrounds in science, engineering, and technology has grown in recent years, with the 116th Congress setting a record with 47 of 535 members with STEM backgrounds. Therefore, most U.S. politicians refer to various Congressional support agencies for analysis on science related issues, which do not solely focus on science, but provide insight for Congress to make decisions dealing with scientific issues. These agencies are nonpartisan and provide objective reports on topics requested by members of congress. They are the Congressional Research Service, Government Accountability Office, and Congressional Budget Office. In the past, the Office of Technology Assessment provided Congressional members and committees with objective analysis of scientific and technical issues, but this office was abolished as a result of the Republican Revolution of 1994.
Further advice is provided by extragovernmental organizations such as The National Academies, which was created and mostly funded by the federal government, and the RAND Corporation, as well as other non-profit organizations such as the American Association for the Advancement of Science and the American Chemical Society among others.

Research and development in the federal budget

The research and development budget by department in the Obama administration's federal budget proposal for fiscal year 2015.


Only a small percentage of the overall federal budget is allocated to R&D. The FY2015 budget request includes $135.110B in R&D spending out of a total budget of $3969.069B, representing 3.4% of the budget. Research and development funding in the federal budget is not centrally enacted, but is spread across many appropriations bills which are enacted in the annual United States budget process. Of the twelve annual appropriations bills, the most important for R&D are those for Defense; Labor, Health and Human Services, and Education ; Commerce, Justice, and Science ; and Energy and Water Development. Other appropriations bills include smaller amounts of R&D funding.
There are a number of federal agencies across the government which carry out science policy. Some of these primarily perform their own research "in-house", while others grant funds to external organizations or individual researchers. In addition, the federally funded research and development centers, which include most of the U.S. National Laboratories, are funded by the government but operated by universities, non-profit organizations, or for-profit consortia.
The FY2015 presidential budget request defines R&D as "the collection of efforts directed toward gaining greater knowledge or understanding and applying knowledge toward the production of useful materials, devices, and methods." R&D is divided into five subcategories. Basic research is directed toward understanding of the fundamental aspects of observable phenomena. It may be directed towards broad but not specific applications. Applied research is directed towards gaining knowledge to meet a recognized and specific need. Development is the application of knowledge or understanding for the production of useful materials, devices, and methods, including production of prototypes. R&D equipment includes acquisition or production of movable equipment, such as spectrometers, research satellites, or detectors. R&D facilities include the construction or major repairs to physical facilities including land, buildings, and fixed capital equipment such fixed facilities as reactors, wind tunnels, and particle accelerators.
The following chart shows a breakdown for the five agencies with the largest R&D budgets in the Obama administration's FY2015 proposal:

Defense research and development

Defense R&D has the goal of "maintaining strategic technological advantages over potential foreign adversaries." As of 2009, just over half of the R&D budget was allocated to defense spending. Most Defense R&D falls under the Research, Development, Test, and Evaluation budget, although some R&D funding is outside this budget, such as the Defense Health Program and the chemical weapons destruction program. The Department of Defense divides development further, giving each category a code: 6.1 is Basic Research, 6.2 is Applied Research, 6.3 is Advanced Technology Development, 6.4 is Advanced Component Development and Prototypes, 6.5 is System Development and Demonstration, 6.6 is RDT&E Management and Support, and 6.7 is Operational Systems Development.
Most of the Defense R&D budget is for weapon systems development, with nearly all activity in categories 6.4 and higher carried out by private defense contractors. About one sixth of it is allocated to the Science and Technology program, which includes all of 6.1, 6.2, 6.3, and medical research. As of 2013, research funding was disbursed 40% to industry, 33% to DoD laboratories, and 21% to academia. The Department of Defense was the third-largest supporter of R&D in academia in FY2012, with only NIH and NSF having larger investments, with DoD the largest federal funder for engineering research and a close second for computer science.
The Defense Research Enterprise consists of S&T programs within each of the three military departments within DoD. The budget is prepared by each department's acquisition secretary, namely the Assistant Secretary of the Air Force, Assistant Secretary of the Navy, and Assistant Secretary of the Army for Acquisition, Logistics, and Technology. Air Force S&T is executed by the Air Force Materiel Command's Air Force Research Laboratory. Navy S&T is executed by the Office of Naval Research, with medical research performed by the Navy Bureau of Medicine and Surgery. For the Army, 72% of the S&T budget is in Army Materiel Command's Research, Development and Engineering Command, with the remainder in Army Medical Research and Materiel Command, Army Corps of Engineers, Army Space and Missile Defense Command and the Deputy Chief of Staff to the Assistant Secretary of the Army. Each agency supports both in-house intramural research as well as grants to outside academic or industrial organizations.
The following chart shows a breakdown for the agencies with the most R&D funding within the Department of Defense in the Obama administration's FY2015 proposal. The "Other" category includes $3.7B for classified programs such as NSA, DIA, and NGA, whose top-level budget numbers are not released, as well as the uncategorized R&D funds not included in the RDT&E budget.

Intellectual property policy

Inventions "conceived or actually reduced to practice" in the performance of government-funded research may be subject to the Bayh-Dole Act.
The Federal Research Public Access Act would require "free online public access to such final peer-reviewed manuscripts or published versions as soon as practicable, but not later than 6 months after publication in peer-reviewed journals".
The America Invents Act of 2011 moved the US from a 'first to invent' system to a 'first to file' model, the most significant patent reform since 1952. This act will limit or eliminate lengthy legal and bureaucratic challenges that used to accompany contested filings. However, the pressure to file early may limit the inventor's ability to exploit the period of exclusivity fully. It may also disadvantage very small entities, for which the legal costs of preparing an application are the main barrier to filing. This legislation has also fostered the rise of what are familiarly known as patent trolls.

Science in political discourse

Most of the leading political issues in the United States have a scientific component. For example, healthcare, renewable energy, climate change, and national security. Amongst U.S. public opinion, 60% of Americans believe scientific experts should play an active role in policy debates over relevant issues, although this view is divided amongst Democrats and Republicans. Broadly, a majority of Americans believe that scientists should be involved in shaping policies related to medical and health, energy, education, environmental, infrastructure, defense, and agriculture policies.

Science policy in the states

State government initiatives

There are also a number of state and local agencies which deal with state-specific science policy and provide additional funding, such as the California Institute for Regenerative Medicine.

Overall research spending in the states

The level of research spending varies considerably from one state to another. Six states each devoted 3.9% or more of their GDP to R&D in 2010, together contributing 42% of national research expenditure. In 2010, more than one-quarter of R&D was concentrated in California, ahead of Massachusetts, New Jersey, Washington State, Michigan, Texas, Illinois, New York and Pennsylvania. Seven states devoted less than 0.8% of GDP to R&D.
California is home to Silicon Valley, the name given to the area hosting the leading corporations and start-ups in information technology. This state also hosts dynamic biotechnology clusters in the San Francisco Bay Area, Los Angeles and San Diego. The main biotechnology clusters outside California are the cities of Boston/Cambridge, Massachusetts, Maryland, suburban Washington DC, New York, Seattle, Philadelphia and Chicago. California supplies 13.7% of all jobs in science and engineering across the country, more than any other state. Some 5.7% of Californians are employed in these fields. This high share reflects a potent combination of academic excellence and a strong business focus on R&D: the prestigious Stanford University and University of California rub shoulders with Silicon Valley, for instance. In much the same way, Route 128 around Boston in the State of Massachusetts is not only home to numerous high-tech firms and corporations but also hosts the renowned Harvard University and Massachusetts Institute of Technology.
New Mexico's high research intensity can be explained by the fact that it hosts both Los Alamos National Laboratory and the primary campus of Sandia National Laboratories, the two major United States Department of Energy research and development national laboratories. Maryland's position may reflect the concentration of federally funded research institutions there. Washington State has a high concentration of high-tech firms like Microsoft, Amazon and Boeing and the engineering functions of most automobile manufacturers are located in the State of Michigan.
Microsoft, Intel and Google figured among the world's top 10 corporations for research spending in 2014. They shared this distinction with Johnson & Johnson, a multinational based in New Jersey which makes pharmaceutical and healthcare products, as well as medical devices, and were closely followed by automobile giant General Motors, based in Detroit, and pharmaceutical companies Merck and Pfizer. Merck is headquartered in New Jersey and Pfizer in New York. Intel's investment in R&D has more than doubled in the past 10 years, whereas Pfizer's investment has dropped since 2012. Several pharmaceutical companies figure among the top 15 corporations for research spending. The USA carries out almost half of all research in the life sciences, making it the world leader. In 2013, US pharmaceutical companies spent US$40 billion on R&D inside the US and nearly another US$11 billion on R&D abroad. Some 7% of the companies on Thomson Reuters' Top 100 Global Innovators list for 2014 are active in biomedical research, equal to the number of businesses in consumer products and telecommunications.
Global top 50 companies by R&D volume and intensity, 2014
Rank in 2014CompanyCountryFieldR&D Change in rank for R&D, 2004–2014Research intensity
1VolkswagenGermanyAutomobiles & parts11743+76.0
2Samsung ElectronicsRep. KoreaElectronics10155+316.5
3MicrosoftUSAComputer hardware and software8253+1013.1
4IntelUSASemiconductors7694+1020.1
5NovartisSwitzerlandPharmaceuticals7174+1517.1
6RocheSwitzerlandPharmaceuticals7076+1218.6
7Toyota MotorsJapanAutomobiles & parts6270−23.5
8Johnson & JohnsonUSAMedical equipment, pharmaceuticals, consumer goods5934+411.5
9GoogleUSAInternet-related products and services5736+17313.2
10DaimlerGermanyAutomobiles & parts5379−74.6
11General MotorsUSAAutomobiles & parts5221−54.6
12Merck USAUSAPharmaceuticals5165+1716.2
13BMWGermanyAutomobiles & parts4792+156.3
14Sanofi-AventisFrancePharmaceuticals4757+814.4
15PfizerUSAPharmaceuticals4750−1312.7
16Robert BoschGermanyEngineering and electronics4653+1010.1
17Ford MotorsUSAAutomobiles & parts4641−164.4
18Cisco SystemsUSANetworking equipment4564+1313.4
19SiemensGermanyElectronics & electrical equipment4556−156.0
20Honda MotorsJapanAutomobiles & parts4367−45.4
21GlaxosmithklineUKPharmaceuticals & biotechnology4154−1013.1
22IBMUSAComputer hardware, middleware & software4089−135.7
23Eli LillyUSAPharmaceuticals4011+1823.9
24OracleUSAComputer hardware & software3735+4713.5
25QualcommUSASemiconductors, telecommunications equipment3602+11220.0
26HuaweiChinaTelecommunications equipment and services3589>20025.6
27AirbusNetherlands*Aeronautics3581+86.0
28EricssonSwedenTelecommunications equipment3485−1113.6
29NokiaFinlandTechnology hardware & equipment3456−914.7
30Nissan MotorsJapanAutomobiles & parts3447+44.8
31General ElectricUSAEngineering, electronics & electrical equipment3444+63.3
32FiatItalyAutomobiles & parts3362+123.9
33PanasonicJapanElectronics & electrical equipment3297−266.2
34BayerGermanyPharmaceuticals & biotechnology3259−28.1
35AppleUSAComputer hardware & software3245+1202.6
36SonyJapanElectronics & electrical equipment3209−2121.3
37AstrazenecaUKPharmaceuticals & biotechnology3203−1217.2
38AmgenUSAPharmaceuticals & biotechnology2961+1821.9
39Boehringer IngelheimGermanyPharmaceuticals & biotechnology2743+2319.5
40Bristol–Myers SquibbUSAPharmaceuticals & biotechnology2705+222.8
41DensoJapanAutomobile parts2539+129.0
42HitachiJapanTechnology hardware & equipment2420−183.7
43Alcatel–LucentFranceTechnology hardware & equipment2374+416.4
44EMCUSAComputer software2355+4814.0
45Takeda PharmaceuticalsJapanPharmaceuticals & biotechnology2352+2820.2
46SAPGermanySoftware & computer services2282+2313.6
47Hewlett–PackardUSATechnology hardware & equipment2273−242.8
48ToshibaJapanComputer hardware2269−185.1
49LG ElectronicsKorea, Rep.Electronics2209+615.5
50VolvoSwedenAutomobiles & parts2131+276.9

* Although incorporated in the Netherlands, Airbus's principal manufacturing facilities are located in France, Germany, Spain and the UK.
Source: UNESCO Science Report: towards 2030, Table 9.3. Based on Hernández et. al EU R&D Scoreboard: the 2014 EU Industrial R&D Investment Scoreboard. European Commission: Brussels, Table 2.2.

History

The first President's Science and Technology Advisor was James R. Killian, appointed in 1958 by President Dwight D. Eisenhower after Sputnik Shock created the urgency for the government to support science and education. President Eisenhower realized then that if Americans were going to continue to be the world leader in scientific, technological and military advances, the government would need to provide support. After World War II, the US government began to formally provide support for scientific research and to establish the general structure by which science is conducted in the US. The foundation for modern American science policy was laid way out in Vannevar Bush's Science – the Endless Frontier, submitted to President Truman in 1945. Vannevar Bush was President Roosevelt's science advisor and became one of the most influential science advisors as, in his essay, he pioneered how we decide on science policy today. He made recommendations to improve the following three areas: national security, health, and the economy—the same three focuses we have today.

Creation of the NSF

The creation of the National Science Foundation, although implemented in 1950, was a controversial issue that started as early as 1942, between engineer and science administrator Vannevar Bush and Senator Harley M. Kilgore, who was interested in the organization of military research. Senator Kilgore presented a series of bills between 1942–1945 to Congress, the one that most resembles the establishment of the NSF, by name, was in 1944, outlining an independent agency whose main focus was to promote peacetime basic and applied research as well as scientific training and education. Some specifics outlined were that the director would be appointed and the board would be composed of scientists, technical experts and members of the public. The government would take ownership of intellectual property developed with federal funding and funding would be distributed based on geographical location, not merit. Although both Bush and Kilgore were in favor of government support of science, they disagreed philosophically on the details of how that support would be carried out. In particular, Bush sided with the board being composed of just scientists with no public insight. When Congress signed the legislation that created the NSF, many of Bush's ideals were removed. It illustrates that these questions about patent rights, social science expectations, the distribution of federal funding, and who get to be the administrators are interesting questions that science policy grapples with.