Rice distribution


In probability theory, the Rice distribution or Rician distribution is the probability distribution of the magnitude of a circular bivariate normal random variable with potentially non-zero mean. It was named after Stephen O. Rice.

Characterization

The probability density function is
where I0 is the modified Bessel function of the first kind with order zero.
In the context of Rician fading, the distribution is often also rewritten using the Shape Parameter, defined as the ratio of the power contributions by line-of-sight path to the remaining multipaths, and the Scale parameter, defined as the total power received in all paths.
The characteristic function of the Rice distribution is given as:
where is one of Horn's confluent hypergeometric functions with two variables and convergent for all finite values of and. It is given by:
where
is the rising factorial.

Properties

Moments

The first few raw moments are:
and, in general, the raw moments are given by
Here Lq denotes a Laguerre polynomial:
where is the confluent hypergeometric function of the first kind. When k is even, the raw moments become simple polynomials in σ and ν, as in the examples above.
For the case q = 1/2:
The second central moment, the variance, is
Note that indicates the square of the Laguerre polynomial, not the generalized Laguerre polynomial

Related distributions

For large values of the argument, the Laguerre polynomial becomes
It is seen that as ν becomes large or σ becomes small the mean becomes ν and the variance becomes σ2.
The transition to a Gaussian approximation proceeds as follows. From Bessel function theory we have
so, in the large region, an asymptotic expansion of the Rician distribution:
Moreover, when the density is concentrated around and because of the Gaussian exponent, we can also write and finally get the Normal approximation
The approximation becomes usable for

Parameter estimation (the Koay inversion technique)

There are three different methods for estimating the parameters of the Rice distribution, method of moments, method of maximum likelihood, and method of least squares. In the first two methods the interest is in estimating the parameters of the distribution, ν and σ, from a sample of data. This can be done using the method of moments, e.g., the sample mean and the sample standard deviation. The sample mean is an estimate of μ1' and the sample standard deviation is an estimate of μ21/2.
The following is an efficient method, known as the "Koay inversion technique". for solving the estimating equations, based on the sample mean and the sample standard deviation, simultaneously. This inversion technique is also known as the fixed point formula of SNR. Earlier works on the method of moments usually use a root-finding method to solve the problem, which is not efficient.
First, the ratio of the sample mean to the sample standard deviation is defined as r, i.e.,. The fixed point formula of SNR is expressed as
where is the ratio of the parameters, i.e.,, and is given by:
where and are modified Bessel functions of the first kind.
Note that is a scaling factor of and is related to by:
To find the fixed point,, of, an initial solution is selected,, that is greater than the lower bound, which is and occurs when . This provides a starting point for the iteration, which uses functional composition, and this continues until is less than some small positive value. Here, denotes the composition of the same function,, times. In practice, we associate the final for some integer as the fixed point,, i.e.,.
Once the fixed point is found, the estimates and are found through the scaling function,, as follows:
and
To speed up the iteration even more, one can use the Newton's method of root-finding. This particular approach is highly efficient.

Applications