Relative grading


In education, relative grading, marking on a curve or grading on a curve is a method of assigning grades to the students in a class in such a way as to obtain or approach a pre-specified distribution of these grades having a specific mean and derivation properties, such as a normal distribution. The term "curve" refers to the bell curve, the graphical representation of the probability density of the normal distribution, but this method can be used to achieve any desired distribution of the grades – for example, a uniform distribution.
One method of grading on a curve uses three steps:
  1. Numeric scores are assigned to the students. The absolute values are less relevant, provided that the order of the scores corresponds to the relative performance of each student within the course.
  2. These scores are converted to percentiles.
  3. The percentile values are transformed to grades according to a division of the percentile scale into intervals, where the interval width of each grade indicates the desired relative frequency for that grade.
For example, if there are five grades in a particular university course, A, B, C, D, and F, where A is reserved for the top 20% of students, B for the next 30%, C for the next 30%-40%, and D or F for the remaining 10%-20%, then scores in the percentile interval from 0% to 20% will receive a grade of D or F, scores from 21% to 50% will receive a grade of C, scores from 51% to 80% receive a grade of B, and scores from 81% to 100% will achieve a grade of A.
Consistent with the example illustrated above, a grading curve allows academic institutions to ensure the distribution of students across certain grade point average thresholds. As many professors establish the curve to target a course average of a C, the corresponding grade point average equivalent would be a 2.0 on a standard 4.0 scale employed at most North American universities. Similarly, a grade point average of 3.0 on a 4.0 scale would indicate that the student is within the top 20% of the class. Grading curves serve to attach additional significance to these figures, and the specific distribution employed may vary between academic institutions.
The ultimate objective of grading curves is to minimize or eliminate the influence of variation between different instructors of the same course, ensuring that the students in any given class are assessed relative to their peers. This also circumvents problems associated with utilizing multiple versions of a particular examination, a method often employed where test administration dates vary between class sections. Regardless of any difference in the level of difficulty, real or perceived, the grading curve ensures a balanced distribution of academic results.
However, curved grading can increase competitiveness between students and affect their sense of faculty fairness in a class. Students are generally most upset in the case that the curve lowered their grade compared to what they would have received if a curve was not used. To ensure that this does not happen, teachers usually put forth effort to ensure that the test itself is hard enough when they intend to use a grading curve, such that they would expect the average student to get a lower raw score than the score intended to be used at the average in the curve, thus ensuring that all students benefit from the curve. Thus, curved grades cannot be blindly used and must be carefully considered and pondered compared to alternatives such as criterion-referenced grading. Furthermore, constant misuse of curved grading can adjust grades on poorly designed tests, whereas assessments should be designed to accurately reflect the learning objectives set by the instructor.