Quantum invariant
In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.- Finite type invariant
- Kontsevich invariant
- Kashaev's invariant
- Witten–Reshetikhin–Turaev invariant
- Invariant differential operator
- Rozansky–Witten invariant
- Vassiliev knot invariant
- Dehn invariant
- LMO invariant
- Turaev–Viro invariant
- Dijkgraaf–Witten invariant
- Reshetikhin–Turaev invariant
- Tau-invariant
- I-Invariant
- Klein J-invariant
- Quantum isotopy invariant
- Ermakov–Lewis invariant
- Hermitian invariant
- Goussarov–Habiro theory of finite-type invariant
- Linear quantum invariant
- Murakami–Ohtsuki TQFT
- Generalized Casson invariant
- Casson-Walker invariant
- Khovanov–Rozansky invariant
- HOMFLY polynomial
- K-theory invariants
- Atiyah–Patodi–Singer eta invariant
- Link invariant
- Casson invariant
- Seiberg–Witten invariant
- Gromov–Witten invariant
- Arf invariant
- Hopf invariant