A proplyd, a syllabic abbreviation of an ionized protoplanetary disk, is an externally illuminated photoevaporatingdisk around a young star. Nearly 180 proplyds have been discovered in the Orion Nebula. Images of proplyds in other star-forming regions are rare, while Orion is the only region with a large known sample due to its relative proximity to Earth.
In the Orion Nebula the proplyds observed are usually one of two types. Some proplyds glow around luminous stars, in cases where the disk is found close to the star, glowing from the star's luminosity. Other proplyds are found at a greater distance from the host star and instead show up as dark silhouettes due to the self-obscuration of cooler dust and gases from the disk itself. Some proplyds show signs of movement from solar irradianceshock waves pushing the proplyds. The Orion Nebula is approximately 1,500 light-years from the Sun with very active star formation. The Orion Nebula and the Sun are in the same spiral arm of the Milky way Galaxy. A proplyd may form new planets and planetesimal systems. Current models show that the metallicity of the star and proplyd, along with the correct planetary system temperature and distance from the star, are keys to planet and planetesimal formation. To date, the solar system, with 8 planets, 5 dwarf planets and 5 planetesimal systems, is the largest planetary system found. Most proplyds develop into a system with no planetesimal systems, or into one very large planetesimal system.
Proplyds in other star-forming regions
Photoevaporating proplyds in other star forming regions were found with the HubbleSpace Telescope. NGC 1977 currently represents the star-forming region with the largest number of proplyds outside of the Orion Nebula, with 7 proplyds. It is also the first and currently only instance where a B-type star, 42 Orionis is responsible for the photoevaporation. Another type of photoevaporating proplyd was discovered with the Spitzer Space Telescope. These cometary tails represent dust being pulled away from the disks. Westerhout 5 is a region with many dusty proplyds, especially around HD 17505. These dusty proplyds are depleted of any gas in the outer regions of the disk, but the photoevaporation could leave an inner, more robust, and possibly gas-rich disk component of radius 5-10 astronomical units. The proplyds in the Orion Nebula and other star-forming regions represent proto-planetary disks around low-mass stars being externally photoevaporated. These low-mass proplyds are usually found within 0.3 parsec of the massive OB star and the dusty proplyds have tails with a length of 0.1 to 0.2 parsec. There is a proposed type of intermediate massive counterpart, called proplyd-like objects. Objects in NGC 3603 and later in Cygnus OB2 were proposed as intermediate massive versions of the bright proplyds found in the Orion Nebula. The proplyd-like objects in Cygnus OB2 for example are 6 to 14 parsec distant to a large collection of OB stars and have tail lengths of 0.11 to 0.55 parsec. The nature of proplyd-like objects as intermediate massive proplyds is partly supported by a sperctrum for one object, which showed that the mass loss rate is higher than the mass accretion rate. Another object did not show any outflow, but accretion.