The principle of explosion quodlibet, "from falsehood, anything ", or ex contradictione quodlibet'', "from contradiction, anything, or the principle of Pseudo-Scotus, is the law of classical logic, intuitionistic logic and similar logical systems, according to which any statement can be proven from a contradiction. That is, once a contradiction has been asserted, any proposition can be inferred from it. This is known as deductive explosion. The proof of this principle was first given by 12th centuryFrench philosopherWilliam of Soissons. As a demonstration of the principle, consider two contradictory statements – "All lemons are yellow" and "Not all lemons are yellow", and suppose that both are true. If that is the case, anything can be proven, e.g., the assertion that "unicorns exist", by using the following argument:
We know that "Not all lemons are yellow", as it has been assumed to be true.
We know that "All lemons are yellow", as it has been assumed to be true.
Therefore, the two-part statement "All lemons are yellow OR unicorns exist” must also be true, since the first part is true.
However, since we know that "Not all lemons are yellow", the first part is false, and hence the second part must be true, i.e., unicorns exist.
In symbolic logic, the principle of explosion can be expressed schematically in the following way:
Proof
Below is a formal proof of the principle using symbolic logic This is just the symbolic version of the informal argument given in the introduction, with standing for "all lemons are yellow" and standing for "Unicorns exist". We start out by assuming that all lemons are yellow and that not all lemons are yellow. From the proposition that all lemons are yellow, we infer that either all lemons are yellow or unicorns exist. But then from this and the fact that not all lemons are yellow, we infer that unicorns exist by disjunctive syllogism.
Semantic argument
An alternate argument for the principle stems from model theory. A sentence is a semantic consequence of a set of sentences only if every model of is a model of. But there is no model of the contradictory set. A fortiori, there is no model of that is not a model of. Thus, vacuously, every model of is a model of. Thus is a semantic consequence of.
Paraconsistent logic
s have been developed that allow for sub-contrary forming operators. Model-theoretic paraconsistent logicians often deny the assumption that there can be no model of and devise semantical systems in which there are such models. Alternatively, they reject the idea that propositions can be classified as true or false. Proof-theoretic paraconsistent logics usually deny the validity of one of the steps necessary for deriving an explosion, typically including disjunctive syllogism, disjunction introduction, and reductio ad absurdum.
Use
The metamathematical value of the principle of explosion is that for any logical system where this principle holds, any derived theory which proves⊥ is worthless because all its statements would become theorems, making it impossible to distinguish truth from falsehood. That is to say, the principle of explosion is an argument for the law of non-contradiction in classical logic, because without it all truth statements become meaningless. Reduction in proof strength of logics without ex falso are discussed in minimal logic.