Powered exoskeleton
A powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. Its design aims to provide back support, sense the user's motion, and send a signal to motors which manage the gears. The exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress.
A powered exoskeleton differs from a passive exoskeleton in the fact that a passive exoskeleton is not powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies. However, similar to a powered exoskeleton, it does give mechanical benefits to the user.
History
The earliest-known exoskeleton-like device was an apparatus for assisting movement developed in 1890 by Russian engineer Nicholas Yagn. It used energy stored in compressed gas bags to assist in movement, although it was passive and required human power. In 1917, United States inventor Leslie C. Kelley developed what he called a pedometer, which operated on steam power with artificial ligaments acting in parallel to the wearer's movements. This system was able to supplement human power with external power.In the 1960s, the first true 'mobile machines' integrated with human movements began to appear. A suit called Hardiman was co-developed by General Electric and the US Armed Forces. The suit was powered by hydraulics and electricity and amplified the wearer's strength by a factor of 25, so that lifting would feel like lifting. A feature called force feedback enabled the wearer to feel the forces and objects being manipulated.
The Hardiman had major limitations, including its weight. It was also designed as a master-slave system: the operator was in a master suit surrounded by the exterior slave suit, which performed work in response to the operator's movements. The response time for the slave suit was slow compared to a suit constructed of a single layer, and bugs caused "violent and uncontrollable motion by the machine" when moving both legs simultaneously. Hardiman's slow walking speed of 0.76 metres per second further limited practical uses, and the project was not successful.
At about the same time, early active exoskeletons and humanoid robots were developed at the Mihajlo Pupin Institute in Yugoslavia by a team led by Prof. Miomir Vukobratović. Legged locomotion systems were developed first, with the goal of assisting in the rehabilitation of paraplegics. In the course of developing active exoskeletons, the Institute also developed theory to aid in the analysis and control of the human gait. Some of this work informed the development of modern high-performance humanoid robots. In 1972, an active exoskeleton for rehabilitation of paraplegics that was pneumatically powered and electronically programmed was tested at Belgrade Orthopedic Clinic.
In 1985, an engineer at Los Alamos National Laboratory proposed an exoskeleton called Pitman, a powered suit of armor for infantrymen. The design included brain-scanning sensors in the helmet and was considered too futuristic; it was never built.
In 1986, an exoskeleton called the Lifesuit was designed by Monty Reed, a US Army Ranger who had broken his back in a parachute accident. While recovering in the hospital, he read Robert Heinlein's science fiction novel Starship Troopers, and Heinlein's description of mobile infantry power suits inspired Reed to design a supportive exoskeleton. In 2001, Reed began working full-time on the project, and in 2005 he wore the 12th prototype in the Saint Patrick's Day Dash foot race in Seattle, Washington. Reed claims to have set the speed record for walking in robot suits by completing the race at an average speed of. The Lifesuit prototype 14 can walk on a full charge and lift for the wearer.
Applications
Medical
Powered exoskeletons can improve the quality of life of individuals who have lost the use of their legs by enabling system-assisted walking. Exoskeletons—that may be called "step rehabilitation robots"—may also help with the rehabilitation from stroke, spinal cord injury or during aging. Several prototype exoskeletons are under development. The Ekso GT, made by Ekso Bionics, is the first exoskeleton to be approved by the US Food and Drug Administration for stroke patients. The German Research Centre for Artificial Intelligence has developed two general purpose powered exoskeletons, CAPIO and VI-Bot. These are primarily being used for teleoperation. Exoskeleton technology is also being developed to enhance precision during surgery, and to help nurses move and carry heavy patients.Military
Developing a full-body suit that meets the needs of soldiers has proven challenging. The Defense Advanced Research Projects Agency launched the Warrior Web program in September 2011 and has developed and funded several prototypes, including a "soft exosuit" developed by Harvard University's Wyss Institute. In 2019, the US Army's TALOS exoskeleton project was put on hold. A variety of "slimmed-down" exoskeletons have been developed for use on the battlefield, aimed at decreasing fatigue and increasing productivity. For example, Lockheed Martin's ONYX suit aims to support soldiers in performing tasks that are "knee-intensive", such as crossing difficult terrain. Leia Stirling's group has identified that exoskeletons can reduce a soldier's response times.Civilian
Exoskeletons are being developed to help firefighters and other rescue workers to climb stairs carrying heavy equipment.Industry
Passive exoskeleton technology is increasingly being used in the automotive industry, with the goal of reducing worker injury and reducing errors due to fatigue. They are also being examined for use in logistics.These systems can be divided into two categories:
- exoskeletons for upper-limb for assisting shoulder flexion-extension movements;
- exoskeletons for lumbar support for assisting manual lifting tasks.
The biomechanical efficacy of exoskeletons in industrial applications is however still largely unknown. Companies have to conduct a risk assessment for workplaces at which exoskeletons are to be used. The Institute for Occupational Safety and Health of the German Social Accident Insurance has developed a draft risk assessment for exoskeletons and their use. The safety assessment is based on diverse experience including machine safety, personal protective equipment and risk analysis of physical stresses at work. The exoskeletons available on the market often fail to give adequate consideration to safety aspects, in some cases despite claims to the contrary by their manufacturers.
Products
Powered
- Japet Exoskeleton is a powered lower-back exoskeleton for work and industry based on established passive braces. It aims at restoring the capacities of co-workers as it postpones fatigue, relieves pain and follows the user's movements.
- Parker Hannifin's Indego Exoskeleton is an FDA-Cleared, electrically powered support system for legs that helps spinal cord injury patients and stroke patients walk.
- ReWalk features powered hip and knee motion to enable those with lower limb disabilities, including paraplegia as a result of spinal cord injury, to perform self-initiated standing, walking, and stair ascending and descending. ReStore, a simpler system by the same manufacturer, attaches to a single leg to assist with gait retraining, and was approved by the FDA in 2019.
- Ekso Bionics's EskoGT is a hydraulically powered exoskeleton system allowing paraplegics to stand and walk with crutches or a walker. It was approved by the FDA in 2019.
- SuitX's Phoenix is a modular, light and cheap exoskeleton, powered by a battery backpack that allows paraplegics to walk at up to.
- Cyberdyne's HAL is a wearable robot that comes in multiple configurations. HAL is currently in use in Japanese and US hospitals and was given global safety certification in 2013.
- Honda's Walking Assist Device is a partial exoskeleton to help those with difficulties walking unsupported. It was given pre-market notification by the FDA in 2019.
- The European Space Agency has developed a series of ergonomic exoskeletons for robotic teleoperation, including the EXARM, X-Arm-2 and SAM exoskeletons. The target application is telemanipulation of astronaut-like robots, operating in a remote harsh environment.
- Roam Robotics produces a soft exoskeleton for skiers and snowboarders.
- Wandercraft produces Atalante, the first powered exoskeleton to allow users to walk hands-free, unlike most powered medical exoskeleton that require the simultaneous use of crutches.
Passive
- SuitX BackxS
- SuitX BackX AC
- SuitX Shoulderx
- Laevo
- SkelEx
Projects on hold/abandoned
- Lockheed Martin's Human Universal Load Carrier was abandoned after tests showed that wearing the suit caused users to expend significantly more energy during controlled treadmill walks.
- Sarcos/Raytheon XOS Exoskeleton arms and legs were originally designed for use in the military. In 2019, the project was reported to be on hold.
- The Berkeley Lower Extremity Exoskeleton consisted of mechanical metal leg braces, a power unit, and a backpack-like frame to carry a heavy load. The technology developed for BLEEX led to SuitX's Phoenix.
- A project from Ghent University, WALL-X was shown in 2013 to reduce the metabolic cost of normal walking. This result was achieved by optimizing the controls based on the study of the biomechanics of the human-exoskeleton interaction.
Limitations and design issues
Power supply
One of the biggest problems facing engineers and designers of powered exoskeletons is the power supply. This is a particular issue if the exoskeleton is intended to be worn "in the field", i.e. outside a context in which the exoskeleton can be tethered to a power source. Batteries require frequent replacement or recharging, and may risk explosion due to thermal runaway.Internal combustion engine power supplies offer high energy output, but problems include exhaust fumes, heat and inability to modulate power smoothly. Hydrogen cells have been used in some prototypes but also suffer from several problems.
Skeleton
Early exoskeletons used inexpensive and easy-to-mold materials, such as steel and aluminium. However, steel is heavy and the powered exoskeleton must work harder to overcome its own weight, reducing efficiency. Aluminium alloys are lightweight, but fail through fatigue quickly. Fiberglass, carbon fiber and carbon nanotubes have considerably higher strength per weight. "Soft" exoskeletons that attach motors and control devices to flexible clothing are also under development.Actuators
Joint actuators also face the challenge of being lightweight, yet powerful. Technologies used include pneumatic activators, hydraulic cylinders, and electronic servomotors. Elastic actuators are being investigated to simulate control of stiffness in human limbs and provide touch perception. The air muscle, braided pneumatic actuator or McKibben air muscle, is also used to enhance tactile feedback.Joint flexibility
is a design issue for traditional "hard" robots. Several human joints such as the hips and shoulders are ball and socket joints, with the center of rotation inside the body. Since no two individuals are exactly alike, fully mimicking the degrees of freedom of a joint is not possible. Instead, the exoskeleton joint is commonly modeled as a series of hinges with one degree of freedom for each of the dominant rotations.Spinal flexibility is another challenge since the spine is effectively a stack of limited-motion ball joints. There is no simple combination of external single-axis hinges that can easily match the full range of motion of the human spine. Because accurate alignment is challenging, devices often include the ability to compensate for misalignment with additional degrees of freedom.
Soft exoskeletons bend with the body and address some of these issues.
Power control and modulation
A successful exoskeleton should assist its user, for example by reducing the energy required to perform a task. Individual variations in the nature, range and force of movements make it difficult for a standardized device to provide the appropriate amount of assistance at the right time. Algorithms to tune control parameters to automatically optimize the energy cost of walking are under development. Direct feedback between the human nervous system and motorized prosthetics has also been implemented in a few high-profile cases.Adaptation to user size variations
Humans exhibit a wide range of physical size differences in both skeletal bone lengths and limb and torso girth, so exoskeletons must either be adaptable or fitted to individual users. In military applications, it may be possible to address this by requiring the user to be of an approved physical size in order to be issued an exoskeleton. Physical body size restrictions already occur in the military for jobs such as aircraft pilots, due to the problems of fitting seats and controls to very large and very small people. For soft exoskeletons, this is less of a problem.Health and safety
While exoskeletons can reduce the stress of manual labor, they may also pose dangers. The US Centers for Disease Control and Prevention has called for research to address the potential dangers and benefits of the technology, noting potential new risk factors for workers such as lack of mobility to avoid a falling object, and potential falls due to a shift in center of gravity.As of 2018, the US Occupational Safety and Health Administration was not preparing any safety standards for exoskeletons. The International Organization for Standardization published a safety standard in 2014, and ASTM International was working on standards to be released beginning in 2019.