Potential evaporation or potential evapotranspiration is defined as the amount of evaporation that would occur if a sufficient water source were available. If the actual evapotranspiration is considered the net result of atmospheric demand for moisture from a surface and the ability of the surface to supply moisture, then PET is a measure of the demand side. Surface and air temperatures, insolation, and wind all affect this. A dryland is a place where annual potential evaporation exceeds annual precipitation.
Estimates of potential evaporation
Thornthwaite equation (1948)
Where is the estimated potential evapotranspiration is the average daily temperature of the month being calculated is the number of days in the month being calculated is the average day length of the month being calculated is a heat index which depends on the 12 monthly mean temperatures. Somewhat modified forms of this equation appear in later publications by Thornthwaite and Mather.
The Penman equation describes evaporation from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.
The Penman–Monteith equation equation refines weather based potential evapotranspiration estimates of vegetated land areas. It is widely regarded as one of the most accurate models, in terms of estimates.
Priestley–Taylor
The Priestley–Taylor equation was developed as a substitute to the Penman–Monteith equation to remove dependence on observations. For Priestley–Taylor, only radiation observations are required. This is done by removing the aerodynamic terms from the Penman–Monteith equation and adding an empirically derived constant factor, . The underlying concept behind the Priestley–Taylor model is that an air mass moving above a vegetated area with abundant water would become saturated with water. In these conditions, the actual evapotranspiration would match the Penman rate of potential evapotranspiration. However, observations revealed that actual evaporation was 1.26 times greater than potential evaporation, and therefore the equation for actual evaporation was found by taking potential evapotranspiration and multiplying it by . The assumption here is for vegetation with an abundant water supply. Areas like arid regions with high moisture stress are estimated to have higher values. The assumption that an air mass moving over a vegetated surface with abundant water saturates has been questioned later. The lowest and turbulent part of the atmosphere, the atmospheric boundary layer, is not a closed box, but constantly brings in dry air from higher up in the atmosphere towards the surface. As water evaporates more easily into a dry atmosphere, evapotranspiration is enhanced. This explains the larger than unity value of the Priestley-Taylor parameter . The proper equilibrium of the system has been derived and involves the characteristics of the interface of the atmospheric boundary layer and the overlying free atmosphere.