Post–Hartree–Fock


In computational chemistry, post–Hartree–Fock methods are the set of methods developed to improve on the Hartree–Fock, or self-consistent field method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Details

In general, the SCF procedure makes several assumptions about the nature of the multi-body Schrödinger equation and its set of solutions:
For the great majority of systems under study, in particular for excited states and processes such as molecular dissociation reactions, the fourth item is by far the most important. As a result, the term post–Hartree–Fock method is typically used for methods of approximating the electron correlation of a system.
Usually, post–Hartree–Fock methods give more accurate results than Hartree–Fock calculations, although the added accuracy comes with the price of added computational cost.

Post–Hartree–Fock methods

Methods that use more than one determinant are not strictly post–Hartree–Fock methods, as they use a single determinant as reference, but they often use similar perturbation, or configuration interaction methods to improve the description of electron correlation. These methods include: