Pentatope number


A pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row either from left to right or from right to left.
The first few numbers of this kind are:
with side length 5 contains 70 3-spheres. Each layer represents one of the first five tetrahedral numbers. For example, the bottom layer has 35 spheres in total.
Pentatope numbers belong to the class of figurate numbers, which can be represented as regular, discrete geometric patterns.

Formula

The formula for the th pentatope number is represented by the 4th rising factorial of divided by the factorial of 4:
The pentatope numbers can also be represented as binomial coefficients:
which is the number of distinct quadruples that can be selected from objects, and it is read aloud as " plus three choose four".

Properties

Two of every three pentatope numbers are also pentagonal numbers. To be precise, the th pentatope number is always the th pentagonal number and the th pentatope number is always the th pentagonal number. The th pentatope number is the generalized pentagonal number obtained by taking the negative index in the formula for pentagonal numbers..
The infinite sum of the reciprocals of all pentatope numbers is. This can be derived using telescoping series.
Pentatope numbers can also be represented as the sum of the first tetrahedral numbers:
Relation to single tetrahedral number:
No prime number is the predecessor of a pentatope number, and the largest semiprime which is the predecessor of a pentatope number is 1819.
Similarly, the only primes preceding a 6-simplex number are 83 and 461.

Test for pentatope numbers

We can derive this test from the formula for the th pentatope number.
Given a positive integer, to test whether it is a pentatope number we can compute
The number is pentatope if and only if is a natural number. In that case is the th pentatope number.

Generating function

The generating function for pentatope numbers is:

Applications

In biochemistry, they represent the number of possible arrangements of n different polypeptide subunits in a tetrameric protein.