Paul Benioff


Paul A. Benioff is an American physicist who helped pioneer the field of quantum computing. Benioff is best known for his research in quantum information theory during the 1970s and 80s that demonstrated the theoretical possibility of quantum computers by describing the first quantum mechanical model of a computer. In this work, Benioff showed that a computer could operate under the laws of quantum mechanics by describing a Schrödinger equation description of Turing machines. Benioff's body of work in quantum information theory has continued on to the present day and has encompassed quantum computers, quantum robots, and the relationship between foundations in logic, math, and physics.

Early life and education

Benioff was born on May 1, 1930, in Pasadena, California. His father was a professor of seismology at the California Institute of Technology, and his mother received a master's degree in English from the University of California, Berkeley.
Benioff also attended Berkeley, where he earned an undergraduate degree in botany in 1951. After a two-year stint working in nuclear chemistry for Tracerlab, he returned to Berkeley. In 1959, he obtained his Ph.D. in nuclear chemistry.

Career

In 1960, Benioff spent a year at the Weizmann Institute of Science in Israel as a postdoctoral fellow. He then spent six months at the Niels Bohr Institute in Copenhagen as a Ford Fellow. In 1961, he began a long career at Argonne National Laboratory, first with its Chemistry Division and later in 1978 in the lab's Environmental Impact Division. Benioff remained at Argonne until he retired in 1995. He continues to conduct research at the laboratory as a post-retirement emeritus scientist for the Physics Division.
In addition, Benioff taught the foundations of quantum mechanics as a visiting professor at Tel Aviv University in 1979, and he worked as a visiting scientist at CNRS Marseilles in 1979 and 1982.

Research

Quantum Computing

In the 1970s, Benioff began to research the theoretical feasibility of quantum computing. His early research culminated in a paper, published in 1980, that described a quantum mechanical model of Turing Machines. This work was based on a classical description in 1973 of reversible Turing machines by physicist Charles H. Bennett.
Benioff's model of a quantum computer was reversible and did not dissipate energy. At the time, there were several papers arguing that the creation of a reversible model of quantum computing was impossible. Benioff's paper was the first to show that reversible quantum computing was theoretically possible, which in turn showed the possibility of quantum computing in general. This work, along with later work by several other authors, initiated the field of quantum computing.
In a paper published in 1982, Benioff further developed his original model of quantum mechanical Turing machines. This work put quantum computers on a solid theoretical foundation. Richard Feynman then produced a universal quantum simulator. Building on the work of Benioff and Feynman, Deutsch proposed that quantum mechanics can be used to solve computational problems faster than classical computers, and in 1994, Shor described a factoring algorithm that is considered to have an exponential speedup over classical computers.
After Benioff and his peers in the field published several more papers on quantum computers, the idea began to gain traction with industry, banking, and government agencies. The field is now a fast-growing area of research that could have applications in cybersecurity, cryptography, quantum system modeling and more.

Further Research

Throughout his career at Argonne, Benioff conducted research in many fields, including mathematics, physics and chemistry. While in the Chemistry Division, he conducted research on nuclear reaction theory, as well as the relationship between the foundations of physics and mathematics.
After joining Argonne's Environmental Impact Division in 1978, Benioff continued work on quantum computing and on foundational issues. This included descriptions of quantum robots, quantum mechanical models of different types of numbers, and other topics. More recently, he has studied the effects of number scaling and local mathematics on physics and geometry. As an emeritus, he continues to work on these and other foundational topics.

Awards and recognition

In 2000, Benioff received the Quantum Communication Award of the International Organization for Quantum Communication, Computing, and Measurement, as well as the Quantum Computing and Communication Prize from Tamagawa University in Japan. He became a fellow of the American Physical Society in 2001. The following year, he was awarded the Special University of Chicago Medal for Distinguished Performance at Argonne National Laboratory. In 2016, Argonne held a conference in honor of his quantum computing work.

Selected scientific works