Pastos Grandes


Pastos Grandes is the name of a caldera and its crater lake in Bolivia. The caldera is part of the Altiplano-Puna volcanic complex, a large ignimbrite province that is part of the Central Volcanic Zone of the Andes. Pastos Grandes has erupted a number of ignimbrites through its history, some of which exceeded a volume of. After the ignimbrite phase, the lava domes of the Cerro Chascon-Runtu Jarita complex were erupted close to the caldera and along faults.
The caldera is the site of a few lakes, some of which are fed by hot springs. A number of minerals, including lithium, are dissolved in the lakes.

Location

Pastos Grandes lies in the Sud Lipez Region of Bolivia. Geographically the area is part of the Altiplano, a high plateau bordered by the Cordillera Occidental and the Cordillera Oriental. The Altiplano contains two large salt pans, the Salar de Uyuni and Salar de Coipasa. The specific area of Pastos Grandes is remote and poorly accessible, the existence of the caldera was first established by satellite imagery.

Geology

Regional

The region has been heavily affected by volcanism, including large ignimbrites and stratovolcanoes extending into Chile. Volcanic rocks include andesite, dacite and rhyodacite with the former dominating in the Chilean stratovolcanoes and the latter in the ignimbrites. The dry regional climate means that there is little erosion and that volcanic centres are well conserved. The surface covered by volcanic rocks amounts to about.
Volcanic activity in the region is the consequence of the subduction of the Nazca Plate beneath the South American Plate in the Peru-Chile Trench. This process has formed three main volcanic zones at the Andes, the Northern Volcanic Zone, the Central Volcanic Zone and the Southern Volcanic Zone. Pastos Grandes is part of the Central Volcanic Zone along with about 50 volcanoes with recent activity and other ignimbrite generating volcanic centres. This ignimbritic volcanism began in the late Miocene and formed a large field known as the Altiplano-Puna volcanic complex, a large volcanic province which clusters around the tripoint between Argentina, Bolivia and Chile.

Local

Pastos Grandes is a nested caldera which underwent repeated collapse in the past, most likely along defined sectors of its rim. The caldera is about wide and had a maximum depth of. Cerro Pastos Grandes is high and shows traces of a sector collapse. It might be a high resurgent dome. The activity of Pastos Grandes may be associated with the ongoing development of a pluton underneath the caldera. Major regional faults running through the region have influenced the shape of the calderas, giving them an elliptic shape which is also evident at Pastos Grandes.
Eruption products of Pastos Grandes are rich in potassium. Minerals encountered in the rock include biotite, plagioclase, quartz and sanidine.

Eruption history

Three large ignimbrite-forming eruptions occurred at Pastos Grandes during its history. At first, it was assumed that large eruptions first occurred 8.1 million years ago, a second 5.6 million years and a third 2.3 million years ago. However, it is not clear which of any eruption formed the caldera. A number of ignimbrites has been attributed to Pastos Grandes, some of them may be different names for the same ignimbrite:
The 6.1 million years old Carcote ignimbrite may also have originated here. The 5.22 ± 0.02 million years old Alota ignimbrite was also attributed to Pastos Grandes, although it originated in a centre northeast of the Pastos Grandes caldera known as Cerro Juvina. These ignimbrites crop out on the outside of the Pastos Grandes caldera, where they extend to distances of, but also cover parts of the caldera. Given the volumes involved, at least some of the eruptions are classified as 8 on the volcanic explosivity index.
Pastos Grandes was volcanically active for a long time, more than many other Altiplano-Puna volcanic complex centres. Later more recent volcanic centres formed within the caldera, the youngest of these centres are relatively recent Such recent centres close to Pastos Grandes are Cerro Chao and Cerro Chascon-Runtu Jarita complex. The former of which lies on a lineament that appears to coincide with the caldera rim of Pastos Grandes, and the latter seems to rise from the ring fault of Pastos Grandes. but is apparently unrelated to the caldera. Cerro Chascon-Runtu Jarita is less than 100,000 years old according to argon-argon dating. This and ongoing geothermal manifestations suggest that volcanic activity may still occur at Pastos Grandes. Finally, Pastos Grandes and Cerro Guacha may be the heat source for the El Tatio geothermal field west of Pastos Grandes.

Lake

At an elevation of, Pastos Grandes contains a lake basin north of Cerro Pastos Grandes, which is wide and covers a surface area of about or at an elevation of. Surfaces of open water are concentrated on the eastern edge of the salt pan, in its very centre and isolated areas on the western side, these all form an intricated network. One of these open water surfaces on the western side of the lake basin is known as Laguna Caliente, while another square-shaped lake in the southern part of the caldera is known as Laguna Khara. Sometimes after heavy precipitation, these open water surfaces can join into a ring lake around the centre.
Intermittent streams drain the catchment of Pastos Grandes and reach the salt pan; the longest flow through the southeastern parts of the catchment. The entire drainage basin of the lake has a surface area of. Apart from surface streams, springs contribute to the water budget of Pastos Grandes. Hot springs are active or were recently active on the western side of the salt pan, where temperatures of have been measured. On the western shore, colder springs predominate.
Earlier lacustrine episodes left a layer of beige mud behind. This mud freezes during the winter months to a certain depth and cryoturbation has formed polygonal structures as well as large cracks in the crust on its surface.
Salts found within the salt pan include gypsum, halite and ulexite. The brines are rich in boron, lithium and sodium chloride, the salt pan has been considered a potential site for lithium and potassium mining. Salt contents range. The salt chemistry is strongly influenced by the climate; the precipitation of mirabilite due to cold and evaporation of water cause changes in the composition of the waters.
At numerous points, calcite pisoliths are found at Pastos Grandes, usually associated with active or former springs. Rimstone dams and sinter terraces are also encountered close to inactive springs. All these cave formations encountered at Pastos Grandes are caused by the precipitation of calcite from oversaturated waters at the surface. What drives the loss of carbon dioxide and thus the oversaturation is not clear but may involve photosynthesis by algae.
Algae and diatoms grow within the open waters in Pastos Grandes, the diatoms being represented by oligohaline species such as some Fragilaria and Navicularia species. Different water surfaces are dominated by different diatom species, distinctions that are only partly mediated by different salinities. Animal species found within the lakes include amphipods, elmids and leeches in freshwater and by Cricotopus in saltwater. Additional animals are Euplanaria dorotocephala, Chironomidae, Corixidae, Cyclopoida, Ephydridae, Harpacticoida, Orchestidae, Ostracoda and Tipulidae species. Similar but different animal species have been found in other local lakes, indicating that they are largely separate systems. The animal flora of such Altiplano lakes is not very diverse, probably due to their relative youth and the harsh and often highly variable climates of the past in the region.
Pastos Grandes is one of many endorheic lakes that cover the region. The neighbouring Altiplano was formerly covered by lakes as well during the Pleistocene. After they dried up, the Salar de Uyuni and Salar de Coipasa were left behind.

Climate

The area of Pastos Grandes has a summer wet climate, with most of the precipitation falling during a wet season in December–March. An estimate for the total precipitation is about. That is, the climate is arid and evaporation rates can reach about. Insolation is high and the temperatures can vary by as much as. During winter, they can drop as far as.