Parrondo's paradox
Parrondo's paradox, a paradox in game theory, has been described as: A combination of losing strategies becomes a winning strategy. It is named after its creator, Juan Parrondo, who discovered the paradox in 1996. A more explanatory description is:
Parrondo devised the paradox in connection with his analysis of the Brownian ratchet, a thought experiment about a machine that can purportedly extract energy from random heat motions popularized by physicist Richard Feynman. However, the paradox disappears when rigorously analyzed. Winning strategies consisting of a combinations of losing strategies have been explored in biology before Parrondo's paradox was published. More recently, problems in evolutionary biology and ecology have been modeled and explained in terms of the paradox.
Illustrative examples
The saw-tooth example
Consider an example in which there are two points A and B having the same altitude, as shown in Figure 1. In the first case, we have a flat profile connecting them. Here, if we leave some round marbles in the middle that move back and forth in a random fashion, they will roll around randomly but towards both ends with an equal probability. Now consider the second case where we have a saw-tooth-like region between them. Here also, the marbles will roll towards either ends with equal probability. Now if we tilt the whole profile towards the right, as shown in Figure 2, it is quite clear that both these cases will become biased towards B.Now consider the game in which we alternate the two profiles while judiciously choosing the time between alternating from one profile to the other.
When we leave a few marbles on the first profile at point E, they distribute themselves on the plane showing preferential movements towards point B. However, if we apply the second profile when some of the marbles have crossed the point C, but none have crossed point D, we will end up having most marbles back at point E but some also in the valley towards point A given sufficient time for the marbles to roll to the valley. Then we again apply the first profile and repeat the steps. If no marbles cross point C before the first marble crosses point D, we must apply the second profile shortly before the first marble crosses point D, to start over.
It easily follows that eventually we will have marbles at point A, but none at point B. Hence if we define having marbles at point A as a win and having marbles at point B as a loss, we clearly win by alternating between playing two losing games.
The coin-tossing example
A second example of Parrondo's paradox is drawn from the field of gambling. Consider playing two games, Game A and Game B with the following rules. For convenience, define to be our capital at time t, immediately before we play a game.- Winning a game earns us $1 and losing requires us to surrender $1. It follows that if we win at step t and if we lose at step t.
- In Game A, we toss a biased coin, Coin 1, with probability of winning. If, this is clearly a losing game in the long run.
- In Game B, we first determine if our capital is a multiple of some integer. If it is, we toss a biased coin, Coin 2, with probability of winning. If it is not, we toss another biased coin, Coin 3, with probability of winning. The role of modulo provides the periodicity as in the ratchet teeth.
However, when these two losing games are played in some alternating sequence - e.g. two games of A followed by two games of B, the combination of the two games is, paradoxically, a winning game. Not all alternating sequences of A and B result in winning games. For example, one game of A followed by one game of B is a losing game, while one game of A followed by two games of B is a winning game. This coin-tossing example has become the canonical illustration of Parrondo's paradox – two games, both losing when played individually, become a winning game when played in a particular alternating sequence.
Resolving the paradox
The apparent paradox has been explained using a number of sophisticated approaches, including Markov chains, flashing ratchets, Simulated Annealing and information theory. One way to explain the apparent paradox is as follows:- While Game B is a losing game under the probability distribution that results for modulo when it is played individually, it can be a winning game under other distributions, as there is at least one state in which its expectation is positive.
- As the distribution of outcomes of Game B depend on the player's capital, the two games cannot be independent. If they were, playing them in any sequence would lose as well.
A simplified example
For a simpler example of how and why the paradox works, again consider two games Game A and Game B, this time with the following rules:- In Game A, you simply lose $1 every time you play.
- In Game B, you count how much money you have left. If it is an even number, you win $3. Otherwise you lose $5.
However, consider playing the games alternatively, starting with Game B, followed by A, then by B, and so on. It should be easy to see that you will steadily earn a total of $2 for every two games.
Thus, even though each game is a losing proposition if played alone, because the results of Game B are affected by Game A, the sequence in which the games are played can affect how often Game B earns you money, and subsequently the result is different from the case where either game is played by itself.
Applications
Parrondo's paradox is used extensively in game theory, and its application to engineering, population dynamics, financial risk, etc., are areas of active research. Parrondo's games are of little practical use such as for investing in stock markets as the original games require the payoff from at least one of the interacting games to depend on the player's capital. However, the games need not be restricted to their original form and work continues in generalizing the phenomenon. Similarities to volatility pumping and the two-envelope problem have been pointed out. Simple finance textbook models of security returns have been used to prove that individual investments with negative median long-term returns may be easily combined into diversified portfolios with positive median long-term returns. Similarly, a model that is often used to illustrate optimal betting rules has been used to prove that splitting bets between multiple games can turn a negative median long-term return into a positive one. In evolutionary biology, both bacterial random phase variation and the evolution of less accurate sensors have been modelled and explained in terms of the paradox. In ecology, the periodic alternation of certain organisms between nomadic and colonial behaviors has been suggested as a manifestation of the paradox. There has been an interesting application in modelling multicellular survival as a consequence of the paradox and some interesting discussion on the feasibility of it. Applications of Parrondo's paradox can also be found in reliability theory. Interested readers can refer to the three review papers which have been published over the years, with the most recent one examining the Parrondo effect across biology.Name
In the early literature on Parrondo's paradox, it was debated whether the word 'paradox' is an appropriate description given that the Parrondo effect can be understood in mathematical terms. The 'paradoxical' effect can be mathematically explained in terms of a convex linear combination.However, Derek Abbott, a leading Parrondo's paradox researcher, provides the following answer regarding the use of the word 'paradox' in this context: