Output transformerless


Output transformerless is a type of vacuum tube audio power amplifier, which omits an output transformer for the purpose of greater linearity and fidelity. Conventional vacuum tube amplifier designs rely upon an output transformer to couple the amplifier's output stage to the loudspeaker. Instead, OTLs use one of two primary methods for output stage coupling: direct coupling or capacitive coupling.

Additional definitions

There is some contention with respect to applying the broader term "OTL" to capacitively coupled designs and variants. The need to delineate these designs from their directly coupled counterparts has led to the informal adoption of several additional terms, including:

By coupling methods: direct versus capacitive coupling and variants

Background: The output coupling method of a vacuum tube amplifier generally serves two basic purposes:
In direct coupled OTL designs, both the necessary blocking of DC and matching of impedances are accomplished, respectively, through the topology of the amplifier's output section and the selection of vacuum tube types with sufficiently low impedance to allow effective power transfer to the loudspeaker. Typically, direct coupled OTL amplifiers will have a user-adjustable DC offset control, which allows the user to trim off any residual DC voltage residing at the amplifier's output terminals prior to operation. Servo-controlled variants also exist.

Capacitively coupled designs

Like the direct coupled designs, capacitively coupled designs rely on the selection of tube types with a sufficiently low impedance to effect the transfer of power to the loudspeaker. However, unlike direct coupled designs, capacitively coupled designs do not have inherent DC blocking by virtue of their topology. Instead, DC voltage in the output section is blocked by an output coupling capacitor - typically a large-value electrolytic capacitor - which is interposed between the amplifier's output section and the loudspeaker.

By output section topology

There are several practical approaches to the design of an OTL amplifier's output section, each with their own respective strengths and weaknesses. While certain topologies lend themselves well to direct coupling, others are more suitable for capacitive coupling. The various designs in service may thus be grouped based upon their common output section topologies. Common topologies include:
OTL power amplifiers for driving loudspeakers require multiple tubes in parallel to obtain the required drive current. An alternative is to use high impedance loudspeakers.
OTL headphone amplifiers are more common, as typical headphones require the current that a single pair of tubes can provide.
OTL designs are sometimes also used when driving long communication or interconnect cables, when a predictable and low output impedance is required.