Numerical semigroup
In mathematics, a numerical semigroup is a special kind of a semigroup. Its underlying set is the set of all nonnegative integers except a finite number and the binary operation is the operation of addition of integers. Also, the integer 0 must be an element of the semigroup. For example, while the set is a numerical semigroup, the set is not because 1 is in the set and 1 + 1 = 2 is not in the set. Numerical semigroups are commutative monoids and are also known as numerical monoids.
The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form x1n1 + x2 n2 +... + xr nr for a given set of positive integers and for arbitrary nonnegative integers x1, x2,..., xr. This problem had been considered by several mathematicians like Frobenius and Sylvester at the end of the 19th century. During the second half of the twentieth century, interest in the study of numerical semigroups resurfaced because of their applications in algebraic geometry.
Definition and examples
Definition
Let N be the set of nonnegative integers. A subset S of N is called a numerical semigroup if the following conditions are satisfied.- 0 is an element of S
- N − S, the complement of S in N, is finite.
- If x and y are in S then x + y is also in S.
Theorem
Let S be the subsemigroup of N generated by A. Then S is a numerical semigroup if and only if gcd = 1. Moreover, every numerical semigroup arises in this way.Examples
The following subsets of N are numerical semigroups.- 〈 1 〉 =
- 〈 1, 2 〉 =
- 〈 2, 3 〉 =
- Let a be a positive integer. 〈 a, a + 1, a + 2,..., 2a - 1 〉 =.
- Let b be an odd integer greater than 1. Then 〈 2, b 〉 =.
- Well-tempered harmonic semigroup H=
Embedding dimension, multiplicity
of generators if none of its proper subsets generates the numerical semigroup. It is known that
every numerical semigroup S has a unique minimal system of generators and also that this minimal system of generators is finite. The cardinality of the minimal set of generators is called the embedding dimension of the numerical semigroup S and is denoted by e. The smallest member in the minimal system of generators is called the multiplicity of the numerical semigroup S and is denoted by m.
Frobenius number and genus
There are several notable numbers associated with a numerical semigroup S.- The set N − S is called the set of gaps in S and is denoted by G.
- The number of elements in the set of gaps G is called the genus of S and is denoted by g.
- The greatest element in G is called the Frobenius number of S and is denoted by F.
- The smallest element of S such that all larger integers are likewise elements of S is called the conductor; it is F + 1.
Examples
- The set of elements in S : S =.
- The minimal set of generators of S :.
- The embedding dimension of S : e = 3.
- The multiplicity of S : m = 5.
- The set of gaps in S : G =.
- The Frobenius number of S is F = 13, and its conductor is 14.
- The genus of S : g = 8.
Numerical semigroups with small Frobenius number or genus
n | Semigroup S with F = n | Semigroup S with g = n |
1 | 〈 2, 3 〉 | 〈 2, 3 〉 |
2 | 〈 3, 4, 5 〉 | 〈 3, 4, 5 〉 〈 2, 5 〉 |
3 | 〈 4, 5, 6, 7 〉 〈 2, 5 〉 | 〈 4, 5, 6, 7, 〉 〈 3, 5, 7 〉 〈 3, 4 〉 〈 2, 7 〉 |
4 | 〈 5, 6, 7, 8, 9 〉 〈 3, 5, 7 〉 | 〈 5, 6, 7, 8, 9 〉 〈 4, 6, 7, 9 〉 〈 3, 7, 8 〉 〈 4, 5, 7 〉 〈 4, 5, 6 〉 〈 3, 5, 〉 〈 2, 9 〉 |
Computation of Frobenius number
Numerical semigroups with embedding dimension two
The following general results were known to Sylvester. Let a and b be positive integers such that gcd = 1. Then- F = − 1 = ab −.
- g = / 2.
Numerical semigroups with embedding dimension three
Rödseth's algorithm
The following algorithm, known as Rödseth's algorithm,can be used to compute the Frobenius number of a numerical semigroup S generated by where a1 < a2 < a3 and gcd = 1. Its worst-case complexity is not as good as Greenberg's algorithm
but it is much simpler to describe.
- Let s0 be the unique integer such that a2s0 ≡ a3 mod a1, 0 ≤ s0 < a1.
- The continued fraction algorithm is applied to the ratio a1/s0:
- *a1 = q1s0 − s1, 0 ≤ s1 < s0,
- *s0 = q2s1 − s2, 0 ≤ s2 < s1,
- *s1 = q3s2 − s3, 0 ≤ s3 < s2,
- *...
- *sm−1 = qm+1sm,
- *sm+1 = 0,
- Let p−1 = 0, p0 = 1, pi+1 = qi+1pi − pi−1 and ri = /a1.
- Let v be the unique integer number such that rv+1 ≤ 0 < rv, or equivalently, the unique integer such
- *sv+1/pv+1 ≤ a3/a2 < sv/pv·
- Then, F = −a1 + a2 + a3 − min.
Special classes of numerical semigroups
A numerical semigroup S is symmetric if it is irreducible and its Frobenius number F is odd. We say that S is pseudo-symmetric provided that S is irreducible and F is even. Such numerical semigroups have simple characterizations in terms of Frobenius number and genus:
- A numerical semigroup S is symmetric if and only if g = /2.
- A numerical semigroup S is pseudo-symmetric if and only if g = /2.