Motorola 68000 series
The Motorola 68000 series is a family of 32-bit CISC microprocessors. During the 1980s and early 1990s, they were popular in personal computers and workstations and were the primary competitors of Intel's x86 microprocessors. They were most well known as the processors powering the early Apple Macintosh, the Sharp X68000, the Commodore Amiga, the Sinclair QL, the Atari ST, the Sega Genesis, the AT&T UnixPC, the Tandy Model 16/16B/6000, the Sun Microsystems Sun-1/Sun-3, the, the Texas Instruments TI-89/TI-92 calculators, the Palm Pilot and the Space Shuttle. Although no modern desktop computers are based on processors in the 680x0 series, derivative processors are still widely used in embedded systems.
Motorola ceased development of the 680x0 series architecture in 1994, replacing it with the PowerPC RISC architecture, which was developed in conjunction with IBM and Apple Computer as part of the AIM alliance.
Family members
- Generation one
- * Motorola 68000
- * Motorola 68EC000
- * Motorola 68SEC000
- * Motorola 68HC000
- * Motorola 68008
- * Motorola 68010
- * Motorola 68012
- Generation two
- * Motorola 68020
- * Motorola 68EC020
- * Motorola 68030
- * Motorola 68EC030
- Generation three
- * Motorola 68040
- * Motorola 68EC040
- * Motorola 68LC040
- Generation four
- * Motorola 68060
- * Motorola 68EC060
- * Motorola 68LC060
- Others
- * Freescale 683XX
- * Freescale ColdFire
- * Freescale DragonBall
- * Philips 68070
Improvement history
- Virtual memory support
- 'loop mode' for faster string and memory library primitives
- multiply instruction uses 14 clock ticks less
- 32-bit address & arithmetic logic unit
- Three stage pipeline
- Instruction cache of 256 bytes
- Unrestricted word and longword data access
- 8× multiprocessing ability
- Larger multiply and divide instructions, and bit field manipulations
- Addressing modes added scaled indexing and another level of indirection
- Low cost, EC = 24-bit address
- Split instruction and data cache of 256 bytes each
- On-chip memory management unit
- Low cost EC = No MMU
- Burst Memory Interface
- Instruction and data caches of 4 KB each
- Six stage pipeline
- On-chip floating-point unit
- FPU lacks IEEE transcendental function ability
- FPU emulation works with 2E71M and later chip revisions
- Low cost LC = No FPU
- Low cost EC = No FPU & MMU
- Instruction and data caches of 8 KB each
- 10 stage pipeline
- Two cycle integer multiplication unit
- Branch prediction
- Dual instruction pipeline
- Instructions in the address generation unit and thereby supply the result two cycles before the ALU
- Low cost LC = No MMU
- Low cost EC = No MMU & FPU
Feature map
Main uses
The 680x0 line of processors has been used in a variety of systems, from modern high-end Texas Instruments calculators to all of the members of the Palm Pilot series that run Palm OS 1.x to 4.x, and even radiation-hardened versions in the critical control systems of the Space Shuttle.However, the 680x0 CPU family became most well known as the processors powering advanced desktop computers such as the Apple Macintosh, the Commodore Amiga, the Sinclair QL, the Atari ST, the SNK NG AES/Neo Geo CD, Atari Jaguar, Commodore CDTV, and several others. The 680x0 were also the processors of choice in the 1980s for Unix workstations and servers such as AT&T's UnixPC, Tandy's Model 16/16B/6000, Sun Microsystems' Sun-1, Sun-2, Sun-3,, Silicon Graphics, and numerous others. There was a 68000 version of CP/M called CP/M-68K, which was initially proposed to be the Atari ST operating system, but Atari chose Atari TOS instead. Many system specific ports of CP/M-68K were available, for example, TriSoft offered a port of the CP/M-68K for the Tandy Model 16/16B/6000.
Also, and perhaps most significantly, the first several versions of Adobe's PostScript interpreters were 68000-based. The 68000 in the Apple LaserWriter and LaserWriter Plus was clocked faster than the version used then in Macintosh computers. A fast 68030 in later PostScript interpreters, including the standard resolution LaserWriter IIntx, IIf and IIg, the higher resolution LaserWriter Pro 600 series and the very high resolution Linotronic imagesetters, the 200PS and 300PS. Thereafter, Adobe generally preferred a RISC for its processor, as its competitors, with their PostScript clones, had already gone with RISCs, often an AMD 29000-series. The early 68000-based Adobe PostScript interpreters and their hardware were named for Cold War-era U.S. rockets and missiles: Atlas, Redstone, etc.
Today, these systems are either end-of-line, or are using different processors. Since these platforms had their peak market share in the 1980s, their original manufacturers either no longer support an operating system for this hardware or are out of business. However, the GNU/Linux, NetBSD and OpenBSD operating systems still include support for 68000 processors.
The 68000 processors were also used in the Sega Genesis and SNK Neo Geo consoles as the main CPU. Other consoles such as the Sega Saturn used the 68000 for audio processing and other I/O tasks, while the Atari Jaguar included a 68000 which was intended for basic system control and input processing, but due to the Jaguar's unusual assortment of heterogeneous processors was also frequently used for running game logic. Many arcade boards also used 68000 processors including boards from Capcom, SNK, and Sega.
Microcontrollers derived from the 68000 family have been used in a huge variety of applications. For example, CPU32 and ColdFire microcontrollers have been manufactured in the millions as automotive engine controllers.
Many proprietary video editing systems used 68000 processors. In this category we can name the MacroSystem Casablanca, which was a black box with an easy to use graphic interface. It was intended for the amateur and hobby videographer market. It is also worth noting its earlier, bigger and more professional counterpart, called "DraCo", The groundbreaking Quantel Paintbox series of early based 24-bit paint and effects system was originally released in 1981 and during its lifetime it used nearly the entire range of 68000 family processors, with the sole exception of the 68060, which was never implemented in its design. Another contender in the video arena, the Abekas 8150 DVE system, used the 680EC30, and the Trinity Play, later renamed Globecaster, uses several 68030s. The Bosch FGS-4000/4500 Video Graphics System manufactured by Robert Bosch Corporation, later BTS, used a 68000 as its main processor; it drove several others to perform 3D animation in a computer that could easily apply Gouraud and Phong shading. It run a modified Motorola Versados operating system.
Architecture
People who are familiar with the PDP-11 or VAX usually feel comfortable with the 68000. With the exception of the split of general-purpose registers into specialized data and address registers, the 68000 architecture is in many ways a 32-bit PDP-11.It had a more orthogonal instruction set than those of many processors that came before and after. That is, it was typically possible to combine operations freely with operands, rather than being restricted to using certain addressing modes with certain instructions. This property made programming relatively easy for humans, and also made it easier to write code generators for compilers.
The 68000 instruction set can be divided into the following broad categories:
- Load and store
- Arithmetic
- Bit shifting
- Bit rotation
- Logic operations
- Type conversion
- Conditional and unconditional branches
- Subroutine invocation and return
- Stack management
- Causing and responding to interrupts
- Exception handling
- There is no equivalent to the x86 CPUID instruction to determine what CPU or MMU or FPU is present.
68050 and 68070
There is also no revision of the 68060, as Motorola was in the process of shifting away from the 68000 and 88k processor lines into its new PowerPC business, so the 68070 was never developed. Had it been, it would have been a revised 68060, likely with a superior FPU.
Motorola mainly used even numbers for major revisions to the CPU core such as 68000, 68020, 68040 and 68060. The 68010 was a revised version of the 68000 with minor modifications to the core, and likewise the 68030 was a revised 68020 with some more powerful features, none of them significant enough to classify as a major upgrade to the core.
There was a CPU with the 68070 designation, which was a licensed and somewhat slower version of the 16/32-bit 68000 with a basic DMA controller, I²C host and an on-chip serial port. This 68070 was used as the main CPU in the Philips CD-i. This CPU was, however, produced by Philips and not officially part of Motorola's 680x0 lineup.
Last generation
The 4th-generation 68060 provided equivalent functionality to most of the features of the Intel P5 microarchitecture.Other variants
The Personal Computers XT/370 and AT/370 PC-based IBM-compatible mainframes each included two modified Motorola 68000 processors with custom microcode to emulate S/370 mainframe instructions.After the mainline 68000 processors' demise, the 68000 family has been used to some extent in microcontroller and embedded microprocessor versions. These chips include the ones listed under "other" above, i.e. the CPU32, the ColdFire, the QUICC and the DragonBall.
With the advent of FPGA technology an international team of hardware developers have re-created the 68000 with many enhancements as an FPGA core. Their core is known as the 68080 and is used in Vampire-branded Amiga accelerators.
Magnetic Scrolls used a subset of the 68000's instructions as a base for the virtual machine in their text adventures.