Modelling biological systems is a significant task of systems biology and mathematical biology. Computational systems biology aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems. It involves the use of computer simulations of biological systems, including cellular subsystems, to both analyze and visualize the complex connections of these cellular processes. Artificial life or virtual evolution attempts to understand evolutionary processes via the computer simulation of simple life forms. An unexpected emergent property of a complex system may be a result of the interplay of the cause-and-effect among simpler, integrated parts. Biological systems manifest many important examples of emergent properties in the complex interplay of components. Traditional study of biological systems requires reductive methods in which quantities of data are gathered by category, such as concentration over time in response to a certain stimulus. Computers are critical to analysis and modelling of these data. The goal is to create accurate real-time models of a system's response to environmental and internal stimuli, such as a model of a cancer cell in order to find weaknesses in its signalling pathways, or modelling of ion channel mutations to see effects on cardiomyocytes and in turn, the function of a beating heart.
Standards
By far the most widely accepted standard format for storing and exchanging models in the field is the Systems Biology Markup Language The website includes a guide to many important software packages used in computational systems biology. A large number of models encoded in SBML can be retrieved from BioModels. Other markup languages with different emphases include BioPAX and CellML.
Particular tasks
Cellular model
Creating a cellular model has been a particularly challenging task of systems biology and mathematical biology. It involves the use of computer simulations of the many cellular subsystems such as the networks of metabolites, enzymes which comprise metabolism and transcription, translation, regulation and induction of gene regulatory networks. The complex network of biochemical reaction/transport processes and their spatial organization make the development of a predictive model of a living cell a grand challenge for the 21st century, listed as such by the National Science Foundation in 2006. A whole cell computational model for the bacterium Mycoplasma genitalium, including all its 525 genes, gene products, and their interactions, was built by scientists from Stanford University and the J. Craig Venter Institute and published on 20 July 2012 in Cell. A dynamic computer model of intracellular signaling was the basis for Merrimack Pharmaceuticals to discover the target for their cancer medicine MM-111. Membrane computing is the task of modelling specifically a cell membrane.
An open source simulation of C. elegans at the cellular level is being pursued by the OpenWorm community. So far the physics engine has been built and models of the neural connectome and a muscle cell have been created in the NeuroML format.
The last decade has seen the emergence of a growing number of simulations of the immune system.
Virtual liver
The Virtual Liver project is a 43 million euro research program funded by the German Government, made up of seventy research group distributed across Germany. The goal is to produce a virtual liver, a dynamic mathematical model that represents human liver physiology, morphology and function.
Tree model
Electronic trees usually use L-systems to simulate growth. L-systems are very important in the field of complexity science and A-life. A universally accepted system for describing changes in plant morphology at the cellular or modular level has yet to be devised. The most widely implemented tree generating algorithms are described in the papers , and
Ecological models
Ecosystem models are mathematical representations of ecosystems. Typically they simplify complex foodwebs down to their major components or trophic levels, and quantify these as either numbers of organisms, biomass or the inventory/concentration of some pertinent chemical element.
The purpose of models in ecotoxicology is the understanding, simulation and prediction of effects caused by toxicants in the environment. Most current models describe effects on one of many different levels of biological organization. A challenge is the development of models that predict effects across biological scales. discusses some types of ecotoxicological models and provides links to many others.
It is possible to model the progress of most infectious diseases mathematically to discover the likely outcome of an epidemic or to help manage them by vaccination. This field tries to find parameters for various infectious diseases and to use those parameters to make useful calculations about the effects of a mass vaccination programme.