Messier 37


Messier 37 ''' is the richest open cluster in the constellation Auriga. It is the brightest of three open clusters in Auriga and was discovered by the Italian astronomer Giovanni Battista Hodierna before 1654. M37 was missed by French astronomer Guillaume Le Gentil when he rediscovered M36 and M38 in 1749. French astronomer Charles Messier independently rediscovered M37 in September 1764 but all three clusters were recorded by Hodierna. It is classified as Trumpler type I,1,r or I,2,r.
M37 is located in the antipodal direction, opposite from the Galactic Center as seen from Earth. Estimates of its age range from 347 million to 550 million years. It has 1,500 times the mass of the Sun and contains over 500 identified stars, with roughly 150 stars brighter than magnitude 12.5. M37 has at least a dozen red giants and its hottest surviving main sequence star is of stellar classification B9 V. The abundance of elements other than hydrogen and helium, what astronomers term metallicity, is similar to, if not slightly higher than, the abundance in the Sun.
At its estimated distance of around from Earth, the cluster's angular diameter of 24 arcminutes corresponds to a physical extent of about. The tidal radius of the cluster, where external gravitational perturbations begin to have a significant influence on the orbits of its member stars, is about. This cluster is following an orbit through the Milky Way with a period of 219.3 Ma and an eccentricity of 0.22. This will bring it as close as to, and as distant as from, the Galactic Center. It reaches a peak distance above the galactic plane of and will cross the plane with a period of 31.7 Ma.

Sky charts