Mercury poisoning


Mercury poisoning is a type of metal poisoning due to exposure to mercury. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High-level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury are unclear.
Forms of mercury exposure include metal, vapor, salt, and organic compound. Most exposure is from eating fish, amalgam based dental fillings, or exposure at work. In fish, those higher up in the food chain generally have higher levels of mercury. Less commonly, poisoning may occur as a method of attempted suicide. Human activities that release mercury into the environment include the burning of coal and mining of gold. Tests of the blood, urine, and hair for mercury are available but do not relate well to the amount in the body.
Prevention includes eating a diet low in mercury, removing mercury from medical and other devices, proper disposal of mercury, and not mining further mercury. In those with acute poisoning from inorganic mercury salts, chelation with either dimercaptosuccinic acid or dimercaptopropane sulfonate appears to improve outcomes if given within a few hours of exposure. Chelation for those with long-term exposure is of unclear benefit. In certain communities that survive on fishing, rates of mercury poisoning among children have been as high as 1.7 per 100.

Signs and symptoms

Common symptoms of mercury poisoning include peripheral neuropathy, presenting as paresthesia or itching, burning, pain, or even a sensation that resembles small insects crawling on or under the skin ; skin discoloration ; swelling; and desquamation.
Mercury irreversibly inhibits selenium-dependent enzymes and may also inactivate S-adenosyl-methionine, which is necessary for catecholamine catabolism by catechol-O-methyl transferase. Due to the body's inability to degrade catecholamines, a person suffering from mercury poisoning may experience profuse sweating, tachycardia, increased salivation, and hypertension.
Affected children may show red cheeks, nose and lips, loss of hair, teeth, and nails, transient rashes, hypotonia, and increased sensitivity to light. Other symptoms may include kidney dysfunction or neuropsychiatric symptoms such as emotional lability, memory impairment, or insomnia.
Thus, the clinical presentation may resemble pheochromocytoma or Kawasaki disease. Desquamation can occur with severe mercury poisoning acquired by handling elemental mercury.

Causes

The consumption of fish is by far the most significant source of ingestion-related mercury exposure in humans, although plants and livestock also contain mercury due to bioconcentration of mercury from seawater, freshwater, marine and lacustrine sediments, soils, and atmosphere, and due to biomagnification by ingesting other mercury-containing organisms. Exposure to mercury can occur from breathing contaminated air, from eating foods that have acquired mercury residues during processing, from exposure to mercury vapor in mercury amalgam dental restorations, and from improper use or disposal of mercury and mercury-containing objects, for example, after spills of elemental mercury or improper disposal of fluorescent lamps.
All of these, except elemental liquid mercury, produce toxicity or death with less than a gram. Mercury's zero oxidation state exists as vapor or as liquid metal, its mercurous state exists as inorganic salts, and its mercuric state may form either inorganic salts or organomercury compounds.
Consumption of whale and dolphin meat, as is the practice in Japan, is a source of high levels of mercury poisoning. Tetsuya Endo, a professor at the Health Sciences University of Hokkaido, has tested whale meat purchased in the whaling town of Taiji and found mercury levels more than 20 times the acceptable Japanese standard.
Human-generated sources, such as coal-burning power plants emit about half of atmospheric mercury, with natural sources such as volcanoes responsible for the remainder. An estimated two-thirds of human-generated mercury comes from stationary combustion, mostly of coal. Other important human-generated sources include gold production, nonferrous metal production, cement production, waste disposal, human crematoria, caustic soda production, pig iron and steel production, mercury production, and biomass burning.
Small independent gold-mining operation workers are at higher risk of mercury poisoning because of crude processing methods. Such is the danger for the galamsey in Ghana and similar workers known as orpailleurs in neighboring francophone countries. While no official government estimates of the labor force have been made, observers believe 20,000–50,000 work as galamseys in Ghana, a figure including many women, who work as porters. Similar problems have been reported amongst the gold miners of Indonesia.
Some mercury compounds, especially organomercury compounds, can also be readily absorbed through direct skin contact. Mercury and its compounds are commonly used in chemical laboratories, hospitals, dental clinics, and facilities involved in the production of items such as fluorescent light bulbs, batteries, and explosives.
Many traditional medicines, including Ayurvedic medicine and Traditional Chinese medicine contain mercury and other heavy metals.
No scientific data support the claim that mercury compounds in vaccine preservatives cause autism or its symptoms.

Methylmercury and related organomercury compounds

is the major source of organic mercury for all individuals. Due to bioaccumulation it works its way up through the food web and thus biomagnifies, resulting in high concentrations among populations of some species. Top predatory fish, such as tuna or swordfish, are usually of greater concern than smaller species. The US FDA and the EPA advise women of child-bearing age, nursing mothers, and young children to completely avoid swordfish, shark, king mackerel and tilefish from the Gulf of Mexico, and to limit consumption of albacore tuna to no more than per week, and of all other fish and shellfish to no more than per week. A 2006 review of the risks and benefits of fish consumption found, for adults, the benefits of one to two servings of fish per week outweigh the risks, even for women of childbearing age, and that avoidance of fish consumption could result in significant excess coronary heart disease deaths and suboptimal neural development in children.
The period between exposure to methylmercury and the appearance of symptoms in adult poisoning cases is long. The longest recorded latent period is five months after a single exposure, in the Dartmouth case ; other latent periods in the range of weeks to months have also been reported. No explanation for this long latent period is known. When the first symptom appears, typically paresthesia, it is followed rapidly by more severe effects, sometimes ending in coma and death. The toxic damage appears to be determined by the peak value of mercury, not the length of the exposure.
Methylmercury exposure during rodent gestation, a developmental period that approximately models human neural development during the first two trimesters of gestation, has long-lasting behavioral consequences that appear in adulthood and, in some cases, may not appear until aging. Prefrontal cortex or dopamine neurotransmission could be especially sensitive to even subtle gestational methylmercury exposure and suggests that public health assessments of methylmercury based on intellectual performance may underestimate the impact of methylmercury in public health.
Ethylmercury is a breakdown product of the antibacteriological agent ethylmercurithiosalicylate, which has been used as a topical antiseptic and a vaccine preservative. Its characteristics have not been studied as extensively as those of methylmercury. It is cleared from the blood much more rapidly, with a half-life of seven to ten days, and it is metabolized much more quickly than methylmercury. It is presumed not to have methylmercury's ability to cross the blood–brain barrier via a transporter, but instead relies on simple diffusion to enter the brain. Other exposure sources of organic mercury include phenylmercuric acetate and phenylmercuric nitrate. These compounds were used in indoor latex paints for their antimildew properties, but were removed in 1990 because of cases of toxicity.

Inorganic mercury compounds

Mercury occurs as salts such as mercuric chloride and mercurous chloride, the latter also known as calomel. Because they are more soluble in water, mercuric salts are usually more acutely toxic than mercurous salts. Their higher solubility lets them be more readily absorbed from the gastrointestinal tract. Mercury salts affect primarily the gastrointestinal tract and the kidneys, and can cause severe kidney damage; however, as they cannot cross the blood–brain barrier easily, these salts inflict little neurological damage without continuous or heavy exposure. Mercuric cyanide is a particularly toxic mercury compound that has been used in murders, as it contains not only mercury but also cyanide, leading to simultaneous cyanide poisoning. The drug n-acetyl penicillamine has been used to treat mercury poisoning with limited success.

Elemental mercury

is poorly absorbed by ingestion and skin contact. Its vapor is the most hazardous form. Animal data indicate less than 0.01% of ingested mercury is absorbed through the intact gastrointestinal tract, though it may not be true for individuals suffering from ileus. Cases of systemic toxicity from accidental swallowing are rare, and attempted suicide via intravenous injection does not appear to result in systemic toxicity, though it still causes damage by physically blocking blood vessels both at the site of injection and the lungs. Though not studied quantitatively, the physical properties of liquid elemental mercury limit its absorption through intact skin and in light of its very low absorption rate from the gastrointestinal tract, skin absorption would not be high. Some mercury vapor is absorbed dermally, but uptake by this route is only about 1% of that by inhalation.
In humans, approximately 80% of inhaled mercury vapor is absorbed via the respiratory tract, where it enters the circulatory system and is distributed throughout the body. Chronic exposure by inhalation, even at low concentrations in the range 0.7–42 μg/m3, has been shown in case–control studies to cause effects such as tremors, impaired cognitive skills, and sleep disturbance in workers.
Acute inhalation of high concentrations causes a wide variety of cognitive, personality, sensory, and motor disturbances. The most prominent symptoms include tremors, emotional lability, insomnia, memory loss, neuromuscular changes, headaches, polyneuropathy, and performance deficits in tests of cognitive function.

Mechanism

The toxicity of mercury sources can be expected to depend on its nature, i.e., salts vs. organomercury compounds vs. elemental mercury.
One mechanism of mercury toxicity involves its irreversible inhibition of selenoenzymes, such as thioredoxin reductase. Although it has many functions, thioredoxin reductase restores vitamins C and E, as well as a number of other important antioxidant molecules, back into their reduced forms, enabling them to counteract oxidative damage. Since the rate of oxygen consumption is particularly high in brain tissues, production of reactive oxygen species is accentuated in these vital cells, making them particularly vulnerable to oxidative damage and especially dependent upon the antioxidant protection provided by selenoenzymes. High mercury exposures deplete the amount of cellular selenium available for the biosynthesis of thioredoxin reductase and other selenoenzymes that prevent and reverse oxidative damage, which, if the depletion is severe and long lasting, results in brain cell dysfunctions that can ultimately cause death.
Mercury in its various forms is particularly harmful to fetuses as an environmental toxin in pregnancy, as well as to infants. Women who have been exposed to mercury in substantial excess of dietary selenium intakes during pregnancy are at risk of giving birth to children with serious birth defects. Mercury exposures in excess of dietary selenium intakes in young children can have severe neurological consequences, preventing nerve sheaths from forming properly.
Exposure to methylmercury causes increased levels of antibodies sent to myelin basic protein, which is involved in the myelination of neurons, and glial fibrillary acidic protein, which is essential to many central nervous system. This causes an autoimmmune response against MBP and GFAP and results in the degradation of neural myelin and general decline in function of the CNS.

Diagnosis

Diagnosis of elemental or inorganic mercury poisoning involves determining the history of exposure, physical findings, and an elevated body burden of mercury. Although whole-blood mercury concentrations are typically less than 6 μg/L, diets rich in fish can result in blood mercury concentrations higher than 200 μg/L; it is not that useful to measure these levels for suspected cases of elemental or inorganic poisoning because of mercury's short half-life in the blood. If the exposure is chronic, urine levels can be obtained; 24-hour collections are more reliable than spot collections. It is difficult or impossible to interpret urine samples of patients undergoing chelation therapy, as the therapy itself increases mercury levels in the samples.
Diagnosis of organic mercury poisoning differs in that whole-blood or hair analysis is more reliable than urinary mercury levels.

Prevention

Mercury poisoning can be prevented or minimized by eliminating or reducing exposure to mercury and mercury compounds. To that end, many governments and private groups have made efforts to heavily regulate the use of mercury, or to issue advisories about its use. Most countries have signed the Minamata Convention on Mercury.
The export from the European Union of mercury and some mercury compounds has been prohibited since 15 March 2010. The European Union has banned most uses of mercury. Mercury is allowed for fluorescent light bulbs because of pressure from countries such as Germany, the Netherlands and Hungary, which are connected to the main producers of fluorescent light bulbs: General Electric, Philips and Osram.
CountryRegulating agencyRegulated activityMediumType of mercury compoundType of limitLimit
USOccupational Safety and Health Administrationoccupational exposureairelemental mercuryCeiling 0.1 mg/m3
USOccupational Safety and Health Administrationoccupational exposureairorganic mercuryCeiling 0.05 mg/m3
USFood and Drug Administrationeatingsea foodmethylmercuryMaximum allowable concentration1 ppm
USEnvironmental Protection Agencydrinkingwaterinorganic mercuryMaximum contaminant level2 ppb

The United States Environmental Protection Agency issued recommendations in 2004 regarding exposure to mercury in fish and shellfish. The EPA also developed the "Fish Kids" awareness campaign for children and young adults on account of the greater impact of mercury exposure to that population.

Cleaning spilled mercury

Mercury thermometers and mercury light bulbs are not as common as they used to be, and the amount of mercury they contain is unlikely to be a health concern if handled carefully. However, broken items still require careful cleanup, as mercury can be hard to collect and it is easy to accidentally create a much larger exposure problem. If available, powdered sulfur may be applied to the spill, in order to create a solid compound that is more easily removed from surfaces than liquid mercury.

Treatment

Identifying and removing the source of the mercury is crucial. Decontamination requires removal of clothes, washing skin with soap and water, and flushing the eyes with saline solution as needed.

Chelation therapy

for acute inorganic mercury poisoning can be done with DMSA, 2,3-dimercapto-1-propanesulfonic acid, D-penicillamine, or dimercaprol. Only DMSA is FDA-approved for use in children for treating mercury poisoning. However, several studies found no clear clinical benefit from DMSA treatment for poisoning due to mercury vapor. No chelator for methylmercury or ethylmercury is approved by the FDA; DMSA is the most frequently used for severe methylmercury poisoning, as it is given orally, has fewer side-effects, and has been found to be superior to BAL, DPCN, and DMPS. α-Lipoic acid has been shown to be protective against acute mercury poisoning in several mammalian species when it is given soon after exposure; correct dosage is required, as inappropriate dosages increase toxicity. Although it has been hypothesized that frequent low dosages of ALA may have potential as a mercury chelator, studies in rats have been contradictory. Glutathione and N-acetylcysteine are recommended by some physicians, but have been shown to increase mercury concentrations in the kidneys and the brain.
Chelation therapy can be hazardous if administered incorrectly. In August 2005, an incorrect form of EDTA used for chelation therapy resulted in hypocalcemia, causing cardiac arrest that killed a five-year-old autistic boy.

Other

Experimental findings have demonstrated an interaction between selenium and methylmercury, but epidemiological studies have found little evidence that selenium helps to protect against the adverse effects of methylmercury.

Prognosis

Some of the toxic effects of mercury are partially or wholly reversible, either through specific therapy or through natural elimination of the metal after exposure has been discontinued. Autopsy findings point to a half-life of inorganic mercury in human brains of 27.4 years. Heavy or prolonged exposure can do irreversible damage, in particular in fetuses, infants, and young children. Young's syndrome is believed to be a long-term consequence of early childhood mercury poisoning.
Mercuric chloride may cause cancer as it has caused increases in several types of tumors in rats and mice, while methyl mercury has caused kidney tumors in male rats. The EPA has classified mercuric chloride and methyl mercury as possible human carcinogens

Detection in biological fluids

Mercury may be measured in blood or urine to confirm a diagnosis of poisoning in hospitalized people or to assist in the forensic investigation in a case of fatal overdosage. Some analytical techniques are capable of distinguishing organic from inorganic forms of the metal. The concentrations in both fluids tend to reach high levels early after exposure to inorganic forms, while lower but very persistent levels are observed following exposure to elemental or organic mercury. Chelation therapy can cause a transient elevation of urine mercury levels.

History

Infantile acrodynia is a type of mercury poisoning in children characterized by pain and pink discoloration of the hands and feet. The word is derived from the Greek, where άκρο means end or extremity, and οδυνη means pain. Acrodynia resulted primarily from calomel in teething powders and decreased greatly after calomel was excluded from most teething powders in 1954.
Acrodynia is difficult to diagnose, "it is most often postulated that the etiology of this syndrome is an idiosyncratic hypersensitivity reaction to mercury because of the lack of correlation with mercury levels, many of the symptoms resemble recognized mercury poisoning."

Medicine

Mercury was once prescribed as a purgative.
Many mercury-containing compounds were once used in medicines. These include calomel, and mercuric chloride.

[|Thiomersal]

In 1999, the Centers for Disease Control and the American Academy of Pediatrics asked vaccine makers to remove the organomercury compound thiomersal from vaccines as quickly as possible, and thiomersal has been phased out of US and European vaccines, except for some preparations of influenza vaccine. The CDC and the AAP followed the precautionary principle, which assumes that there is no harm in exercising caution even if it later turns out to be unwarranted, but their 1999 action sparked confusion and controversy that Thiomersal was the cause of autism.
Since 2000, the thiomersal in child vaccines has been alleged to contribute to autism, and thousands of parents in the United States have pursued legal compensation from a federal fund. A 2004 Institute of Medicine committee favored rejecting any causal relationship between thiomersal-containing vaccines and autism. Autism incidence rates increased steadily even after thiomersal was removed from childhood vaccines. Currently there is no accepted scientific evidence that exposure to thiomersal is a factor in causing autism.

Dental amalgam toxicity

is a possible cause of low-level mercury poisoning due to its use in dental fillings. Discussion on the topic includes debates on whether amalgam should be used, with critics arguing that its toxic effects make it unsafe.

Cosmetics

Some skin whitening products contain the toxic mercury chloride as the active ingredient. When applied, the chemical readily absorbs through the skin into the bloodstream. The use of mercury in cosmetics is illegal in the United States. However, cosmetics containing mercury are often illegally imported. Following a certified case of mercury poisoning resulting from the use of an imported skin whitening product, the United States Food and Drug Administration warned against the use of such products. Symptoms of mercury poisoning have resulted from the use of various mercury-containing cosmetic products. The use of skin whitening products is especially popular amongst Asian women. In Hong Kong in 2002, two products were discovered to contain between 9,000 and 60,000 times the recommended dose.

Fluorescent lamps

s contain mercury, which is released when bulbs break. Mercury in bulbs is typically present as either elemental mercury liquid, vapor, or both, since the liquid evaporates at ambient temperature. When broken indoors, bulbs may emit sufficient mercury vapor to present health concerns, and the U.S. Environmental Protection Agency recommends evacuating and airing out a room for at least 15 minutes after breaking a fluorescent light bulb. Breakage of multiple bulbs presents a greater concern. A 1987 report described a 23-month-old toddler who suffered anorexia, weight loss, irritability, profuse sweating, and peeling and redness of fingers and toes. This case of acrodynia was traced to exposure of mercury from a carton of 8-foot fluorescent light bulbs that had broken in a potting shed adjacent to the main nursery. The glass was cleaned up and discarded, but the child often used the area to play in.

Assassination attempts

Mercury has, allegedly, been used at various times to assassinate people. In 2008, Russian lawyer Karinna Moskalenko claimed to have been poisoned by mercury left in her car, while in 2010 journalists Viktor Kalashnikov and Marina Kalashnikova accused Russia's FSB of trying to poison them.